

Kotlin Language Documentation

Table of Contents

Overview
Using Kotlin for Server-side Development

Using Kotlin for Android Development

Kotlin JavaScript Overview

Kotlin/Native

What's New in Kotlin 1.1

What's New in Kotlin 1.2

Getting Started
Basic Syntax

Idioms

Coding Conventions

Basics
Basic Types

Packages

Control Flow: if, when, for, while

Returns and Jumps

Classes and Objects
Classes and Inheritance

Properties and Fields

Interfaces

Visibility Modifiers

Extensions

Data Classes

Sealed Classes

Generics

Nested and Inner Classes

Enum Classes

Object Expressions and Declarations

Delegation

Delegated Properties

Functions and Lambdas
Functions

Higher-Order Functions and Lambdas

Inline Functions

Coroutines

Other
Destructuring Declarations

Collections: List, Set, Map

5

5

7

8

9

10

19

25

25

31

36

51

51

56

58

61

63

63

69

73

75

77

82

84

85

90

91

93

97

98

104

104

110

116

119

124

124

126

2

Ranges

Type Checks and Casts: 'is' and 'as'

This Expression

Equality

Operator overloading

Null Safety

Exceptions

Annotations

Reflection

Type-Safe Builders

Multiplatform Projects

Reference
Keywords and Operators

Grammar

Notation

Semicolons

Syntax

Lexical structure

Compatibility

Java Interop
Calling Java code from Kotlin

Calling Kotlin from Java

JavaScript
Dynamic Type

Calling JavaScript from Kotlin

Calling Kotlin from JavaScript

JavaScript Modules

JavaScript Reflection

JavaScript DCE

Example

Tools
Documenting Kotlin Code

Annotation Processing with Kotlin

Using Gradle

Using Maven

Using Ant

Kotlin and OSGi

Compiler Plugins

FAQ
FAQ

128

131

134

135

136

139

142

144

148

152

158

162

162

166

166

166

166

174

176

179

179

189

196

196

198

201

203

206

207

207

209

209

212

215

221

228

231

232

238

238

3

Comparison to Java Programming Language 241

4

Overview

Kotlin is a great fit for developing server-side applications, allowing to write concise and expressive code while maintaining full
compatibility with existing Java-based technology stacks and a smooth learning curve:

Expressiveness: Kotlin's innovative language features, such as its support for type-safe builders and delegated properties,
help build powerful and easy-to-use abstractions.
Scalability: Kotlin's support for coroutines helps build server-side applications that scale to massive numbers of clients with
modest hardware requirements.
Interoperability: Kotlin is fully compatible with all Java-based frameworks, which lets you stay on your familiar technology
stack while reaping the benefits of a more modern language.
Migration: Kotlin supports gradual, step by step migration of large codebases from Java to Kotlin. You can start writing new
code in Kotlin while keeping older parts of your system in Java.
Tooling: In addition to great IDE support in general, Kotlin offers framework-specific tooling (for example, for Spring) in the
plugin for IntelliJ IDEA Ultimate.
Learning Curve: For a Java developer, getting started with Kotlin is very easy. The automated Java to Kotlin converter
included in the Kotlin plugin helps with the first steps. Kotlin Koans offer a guide through the key features of the language
with a series of interactive exercises.

Spring makes use of Kotlin's language features to offer more concise APIs, starting with version 5.0. The online project
generator allows to quickly generate a new project in Kotlin.

Vert.x, a framework for building reactive Web applications on the JVM, offers dedicated support for Kotlin, including full
documentation.

Ktor is a Kotlin-native Web framework built by JetBrains, making use of coroutines for high scalability and offering an easy-to-
use and idiomatic API.

kotlinx.html is a DSL that can be used to build HTML in a Web application. It serves as an alternative to traditional templating
systems such as JSP and FreeMarker.

The available options for persistence include direct JDBC access, JPA, as well as using NoSQL databases through their Java
drivers. For JPA, the kotlin-jpa compiler plugin adapts Kotlin-compiled classes to the requirements of the framework.

Kotlin applications can be deployed into any host that supports Java Web applications, including Amazon Web Services, Google
Cloud Platform and more.

To deploy Kotlin applications on Heroku, you can follow the official Heroku tutorial.

AWS Labs provides a sample project showing the use of Kotlin for writing AWS Lambda functions.

Corda is an open-source distributed ledger platform, supported by major banks, and built entirely in Kotlin.

JetBrains Account, the system responsible for the entire license sales and validation process at JetBrains, is written in 100%
Kotlin and has been running in production since 2015 with no major issues.

Using Kotlin for Server-side Development

—

—

—

—

—

—

Frameworks for Server-side Development with Kotlin

—

—

—

—

—

Deploying Kotlin Server-side Applications

Users of Kotlin on the Server Side

5

https://spring.io
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://start.spring.io/#!language=kotlin
http://vertx.io
https://github.com/vert-x3/vertx-lang-kotlin
http://vertx.io/docs/vertx-core/kotlin/
https://github.com/kotlin/ktor
https://github.com/kotlin/kotlinx.html
https://www.heroku.com
https://devcenter.heroku.com/articles/getting-started-with-kotlin
https://github.com/awslabs/serverless-photo-recognition
https://aws.amazon.com/lambda/
https://www.corda.net/2017/01/10/kotlin/
https://account.jetbrains.com/

The Creating Web Applications with Http Servlets and Creating a RESTful Web Service with Spring Boot tutorials show you
how you can build and run very small Web applications in Kotlin.
For a more in-depth introduction to the language, check out the reference documentation on this site and Kotlin Koans.

Next Steps

—

—

6

Kotlin is a great fit for developing Android applications, bringing all of the advantages of a modern language to the Android
platform without introducing any new restrictions:

Compatibility: Kotlin is fully compatible with JDK 6, ensuring that Kotlin applications can run on older Android devices with
no issues. The Kotlin tooling is fully supported in Android Studio and compatible with the Android build system.
Performance: A Kotlin application runs as fast as an equivalent Java one, thanks to very similar bytecode structure. With
Kotlin's support for inline functions, code using lambdas often runs even faster than the same code written in Java.
Interoperability: Kotlin is 100% interoperable with Java, allowing to use all existing Android libraries in a Kotlin application.
This includes annotation processing, so databinding and Dagger work too.
Footprint: Kotlin has a very compact runtime library, which can be further reduced through the use of ProGuard. In a real
application, the Kotlin runtime adds only a few hundred methods and less than 100K to the size of the .apk file.
Compilation Time: Kotlin supports efficient incremental compilation, so while there's some additional overhead for clean
builds, incremental builds are usually as fast or faster than with Java.
Learning Curve: For a Java developer, getting started with Kotlin is very easy. The automated Java to Kotlin converter
included in the Kotlin plugin helps with the first steps. Kotlin Koans offer a guide through the key features of the language
with a series of interactive exercises.

Kotlin has been successfully adopted by major companies, and a few of them have shared their experiences:

Pinterest has successfully introduced Kotlin into their application, used by 150M people every month.
Basecamp's Android app is 100% Kotlin code, and they report a huge difference in programmer happiness and great
improvements in work quality and speed.
Keepsafe's App Lock app has also been converted to 100% Kotlin, leading to a 30% decrease in source line count and 10%
decrease in method count.

The Kotlin team offers a set of tools for Android development that goes beyond the standard language features:

Kotlin Android Extensions is a compiler extension that allows you to get rid of findViewById() calls in your code and to
replace them with synthetic compiler-generated properties.
Anko is a library providing a set of Kotlin-friendly wrappers around the Android APIs, as well as a DSL that lets you replace
your layout .xml files with Kotlin code.

Download and install Android Studio 3.0, which includes Kotlin support out of the box.
Follow the Getting Started with Android and Kotlin tutorial to create your first Kotlin application.
For a more in-depth introduction, check out the reference documentation on this site and Kotlin Koans.
Another great resource is Kotlin for Android Developers, a book that guides you step by step through the process of
creating a real Android application in Kotlin.
Check out Google's sample projects written in Kotlin.

Using Kotlin for Android Development

—

—

—

—

—

—

Kotlin for Android Case Studies

—
—

—

Tools for Android Development

—

—

Next Steps

—
—
—
—

—

7

https://blog.gouline.net/kotlin-production-tales-62b56057dc8a
https://medium.com/keepsafe-engineering/kotlin-vs-java-compilation-speed-e6c174b39b5d
https://www.youtube.com/watch?v=mDpnc45WwlI
https://m.signalvnoise.com/how-we-made-basecamp-3s-android-app-100-kotlin-35e4e1c0ef12
https://medium.com/keepsafe-engineering/lessons-from-converting-an-app-to-100-kotlin-68984a05dcb6
http://github.com/kotlin/anko
https://developer.android.com/studio/index.html
https://leanpub.com/kotlin-for-android-developers
https://developer.android.com/samples/index.html?language=kotlin

Kotlin provides the ability to target JavaScript. It does so by transpiling Kotlin to JavaScript. The current implementation targets
ECMAScript 5.1 but there are plans to eventually target ECMAScript 2015 as well.

When you choose the JavaScript target, any Kotlin code that is part of the project as well as the standard library that ships with
Kotlin is transpiled to JavaScript. However, this excludes the JDK and any JVM or Java framework or library used. Any file that is not
Kotlin will be ignored during compilation.

The Kotlin compiler tries to comply with the following goals:

Provide output that is optimal in size
Provide output that is readable JavaScript
Provide interoperability with existing module systems
Provide the same functionality in the standard library whether targeting JavaScript or the JVM (to the largest possible degree).

You may want to compile Kotlin to JavaScript in the following scenarios:

Creating Kotlin code that targets client-side JavaScript

Interacting with DOM elements. Kotlin provides a series of statically typed interfaces to interact with the Document
Object Model, allowing creation and update of DOM elements.

Interacting with graphics such as WebGL. You can use Kotlin to create graphical elements on a web page using
WebGL.

Creating Kotlin code that targets server-side JavaScript

Working with server-side technology. You can use Kotlin to interact with server-side JavaScript such as Node.js

Kotlin can be used together with existing third-party libraries and frameworks, such as jQuery or React. To access third-party
frameworks with a strongly-typed API, you can convert TypeScript definitions from the Definitely Typed type definitions repository
to Kotlin using the ts2kt tool. Alternatively, you can use the dynamic type to access any framework without strong typing.

JetBrains develops and maintains several tools specifically for the React community: React bindings as well as Create React
Kotlin App. The latter helps you start building React apps with Kotlin with no build configuration.

Kotlin is compatible with CommonJS, AMD and UMD, making interaction with different module systems straightforward.

To find out how to start using Kotlin for JavaScript, please refer to the tutorials.

Kotlin JavaScript Overview

—
—
—
—

How it can be used

—

—

—

—

—

Getting Started with Kotlin to JavaScript

8

http://definitelytyped.org/
https://github.com/kotlin/ts2kt
https://github.com/JetBrains/kotlin-wrappers
https://github.com/JetBrains/create-react-kotlin-app

Kotlin/Native is a technology for compiling Kotlin to native binaries that run without any VM. It comprises a LLVM-based backend
for the Kotlin compiler and a native implementation of the Kotlin runtime library. Kotlin/Native is primarily designed to allow
compilation for platforms where virtual machines are not desirable or possible (such as iOS, embedded targets), or where a
developer needs to produce a reasonably-sized self-contained program that does not require an additional runtime.

Kotlin/Native fully supports interoperability with native code. For platform libraries, the corresponding interop libraries are available
out of the box. For other libraries, we provide a tool to generate an interop library from a C header file, with full support for all C
language features. On macOS and iOS, interoperability with Objective/C code is also supported.

Kotlin/Native is currently in development; preview releases are available for you to try. IDE support for Kotlin/Native is available as
plugins for CLion.

Kotlin/Native currently supports the following platforms:

Windows (x86_64 only at the moment)
Linux (x86_64, arm32, MIPS, MIPS little endian)
MacOS (x86_64)
iOS (arm64 only)
Android (arm32 and arm64)
WebAssembly (wasm32 only)

We've built a number of sample projects to showcase the possibilities of Kotlin/Native:

The Kotlin/Native GitHub repository contains a number of sample projects;
The KotlinConf Spinner app is a simple cross-platform mobile multiplayer game fully built in Kotlin/Native, consisting of the
following components:

a backend, using SQLite for data storage and exposing a REST/JSON API;
mobile clients for iOS and Android, using OpenGL;
a WebAssembly-based browser frontend for viewing the game scores.

The KotlinConf app is an iOS app with a UIKit-based UI, showcasing the Objective/C interop facilities of Kotlin/Native.

Kotlin/Native

Target Platforms

—
—
—
—
—
—

Sample Projects

—
—

—
—
—

—

9

https://github.com/JetBrains/kotlin-native/
https://github.com/JetBrains/kotlin-native/blob/master/INTEROP.md
https://www.jetbrains.com/clion/
https://github.com/JetBrains/kotlin-native/tree/master/samples
https://github.com/jetbrains/kotlinconf-spinner
https://github.com/JetBrains/kotlinconf-app/tree/master/ios

Coroutines
Other language features
Standard library
JVM backend
JavaScript backend

Starting with Kotlin 1.1, the JavaScript target is no longer considered experimental. All language features are supported, and
there are many new tools for integration with the front-end development environment. See below for a more detailed list of
changes.

The key new feature in Kotlin 1.1 is coroutines, bringing the support of async / await , yield and similar programming
patterns. The key feature of Kotlin's design is that the implementation of coroutine execution is part of the libraries, not the
language, so you aren't bound to any specific programming paradigm or concurrency library.

A coroutine is effectively a light-weight thread that can be suspended and resumed later. Coroutines are supported through
suspending functions: a call to such a function can potentially suspend a coroutine, and to start a new coroutine we usually use
an anonymous suspending functions (i.e. suspending lambdas).

Let's look at async / await which is implemented in an external library, kotlinx.coroutines:

// runs the code in the background thread pool
fun asyncOverlay() = async(CommonPool) {
 // start two async operations
 val original = asyncLoadImage("original")
 val overlay = asyncLoadImage("overlay")
 // and then apply overlay to both results
 applyOverlay(original.await(), overlay.await())
}

// launches new coroutine in UI context
launch(UI) {
 // wait for async overlay to complete
 val image = asyncOverlay().await()
 // and then show it in UI
 showImage(image)
}

Here, async { ... } starts a coroutine and, when we use await() , the execution of the coroutine is suspended while the
operation being awaited is executed, and is resumed (possibly on a different thread) when the operation being awaited
completes.

The standard library uses coroutines to support lazily generated sequences with yield and yieldAll functions. In such a
sequence, the block of code that returns sequence elements is suspended after each element has been retrieved, and
resumed when the next element is requested. Here's an example:

What's New in Kotlin 1.1

Table of Contents

—
—
—
—
—

JavaScript

Coroutines (experimental)

10

https://github.com/kotlin/kotlinx.coroutines

 val seq = buildSequence {
 for (i in 1..5) {
 // yield a square of i
 yield(i * i)
 }
 // yield a range
 yieldAll(26..28)
 }

 // print the sequence
 println(seq.toList())

Run the code above to see the result. Feel free to edit it and run again!

For more information, please refer to the coroutine documentation and tutorial.

Note that coroutines are currently considered an experimental feature, meaning that the Kotlin team is not committing to
supporting the backwards compatibility of this feature after the final 1.1 release.

A type alias allows you to define an alternative name for an existing type. This is most useful for generic types such as
collections, as well as for function types. Here is an example:

typealias OscarWinners = Map<String, String>

fun countLaLaLand(oscarWinners: OscarWinners) =
 oscarWinners.count { it.value.contains("La La Land") }

// Note that the type names (initial and the type alias) are interchangeable:
fun checkLaLaLandIsTheBestMovie(oscarWinners: Map<String, String>) =
 oscarWinners["Best picture"] == "La La Land"

See the documentation and KEEP for more details.

You can now use the :: operator to get a member reference pointing to a method or property of a specific object instance.
Previously this could only be expressed with a lambda. Here's an example:

val numberRegex = "\\d+".toRegex()
val numbers = listOf("abc", "123", "456").filter(numberRegex::matches)

Read the documentation and KEEP for more details.

Kotlin 1.1 removes some of the restrictions on sealed and data classes that were present in Kotlin 1.0. Now you can define
subclasses of a top-level sealed class on the top level in the same file, and not just as nested classes of the sealed class. Data
classes can now extend other classes. This can be used to define a hierarchy of expression classes nicely and cleanly:

Other Language Features

Type aliases

Bound callable references

Sealed and data classes

11

https://github.com/Kotlin/KEEP/blob/master/proposals/type-aliases.md
https://github.com/Kotlin/KEEP/blob/master/proposals/bound-callable-references.md

sealed class Expr

data class Const(val number: Double) : Expr()
data class Sum(val e1: Expr, val e2: Expr) : Expr()
object NotANumber : Expr()

fun eval(expr: Expr): Double = when (expr) {
 is Const -> expr.number
 is Sum -> eval(expr.e1) + eval(expr.e2)
 NotANumber -> Double.NaN
}
val e = eval(Sum(Const(1.0), Const(2.0)))

Read the documentation or sealed class and data class KEEPs for more detail.

You can now use the destructuring declaration syntax to unpack the arguments passed to a lambda. Here's an example:

 val map = mapOf(1 to "one", 2 to "two")
 // before
 println(map.mapValues { entry ->
 val (key, value) = entry
 "$key -> $value!"
 })
 // now
 println(map.mapValues { (key, value) -> "$key -> $value!" })

Read the documentation and KEEP for more details.

For a lambda with multiple parameters, you can use the _ character to replace the names of the parameters you don't use:

 map.forEach { _, value -> println("$value!") }

This also works in destructuring declarations:

 val (_, status) = getResult()

Read the KEEP for more details.

Just as in Java 8, Kotlin now allows to use underscores in numeric literals to separate groups of digits:

val oneMillion = 1_000_000
val hexBytes = 0xFF_EC_DE_5E
val bytes = 0b11010010_01101001_10010100_10010010

Read the KEEP for more details.

For properties with the getter defined as an expression body, the property type can now be omitted:

data class Person(val name: String, val age: Int) {
 val isAdult get() = age >= 20 // Property type inferred to be 'Boolean'
}

Destructuring in lambdas

Underscores for unused parameters

Underscores in numeric literals

Shorter syntax for properties

12

https://github.com/Kotlin/KEEP/blob/master/proposals/sealed-class-inheritance.md
https://github.com/Kotlin/KEEP/blob/master/proposals/data-class-inheritance.md
https://github.com/Kotlin/KEEP/blob/master/proposals/destructuring-in-parameters.md
https://github.com/Kotlin/KEEP/blob/master/proposals/underscore-for-unused-parameters.md
https://github.com/Kotlin/KEEP/blob/master/proposals/underscores-in-numeric-literals.md

You can now mark property accessors with the inline modifier if the properties don't have a backing field. Such accessors are
compiled in the same way as inline functions.

public val <T> List<T>.lastIndex: Int
 inline get() = this.size - 1

You can also mark the entire property as inline - then the modifier is applied to both accessors.

Read the documentation and KEEP for more details.

You can now use the delegated property syntax with local variables. One possible use is defining a lazily evaluated local variable:

 val answer by lazy {
 println("Calculating the answer...")
 42
 }
 if (needAnswer()) { // returns the random value
 println("The answer is $answer.") // answer is calculated at this point
 }
 else {
 println("Sometimes no answer is the answer...")
 }

Read the KEEP for more details.

For delegated properties, it is now possible to intercept delegate to property binding using the provideDelegate operator. For
example, if we want to check the property name before binding, we can write something like this:

class ResourceLoader<T>(id: ResourceID<T>) {
 operator fun provideDelegate(thisRef: MyUI, prop: KProperty<*>): ReadOnlyProperty<MyUI, T> {
 checkProperty(thisRef, prop.name)
 ... // property creation
 }

 private fun checkProperty(thisRef: MyUI, name: String) { ... }
}

fun <T> bindResource(id: ResourceID<T>): ResourceLoader<T> { ... }

class MyUI {
 val image by bindResource(ResourceID.image_id)
 val text by bindResource(ResourceID.text_id)
}

The provideDelegate method will be called for each property during the creation of a MyUI instance, and it can perform the
necessary validation right away.

Read the documentation for more details.

It is now possible to enumerate the values of an enum class in a generic way.

Inline property accessors

Local delegated properties

Interception of delegated property binding

Generic enum value access

13

https://github.com/Kotlin/KEEP/blob/master/proposals/inline-properties.md
https://github.com/Kotlin/KEEP/blob/master/proposals/local-delegated-properties.md

enum class RGB { RED, GREEN, BLUE }

inline fun <reified T : Enum<T>> printAllValues() {
 print(enumValues<T>().joinToString { it.name })
}

The @DslMarker annotation allows to restrict the use of receivers from outer scopes in a DSL context. Consider the canonical
HTML builder example:

table {
 tr {
 td { +"Text" }
 }
}

In Kotlin 1.0, code in the lambda passed to td has access to three implicit receivers: the one passed to table , to tr and to
td . This allows you to call methods that make no sense in the context - for example to call tr inside td and thus to put a
<tr> tag in a <td> .

In Kotlin 1.1, you can restrict that, so that only methods defined on the implicit receiver of td will be available inside the lambda
passed to td . You do that by defining your annotation marked with the @DslMarker meta-annotation and applying it to the
base class of the tag classes.

Read the documentation and KEEP for more details.

The mod operator is now deprecated, and rem is used instead. See this issue for motivation.

There is a bunch of new extensions on the String class to convert it to a number without throwing an exception on invalid
number: String.toIntOrNull(): Int? , String.toDoubleOrNull(): Double? etc.

val port = System.getenv("PORT")?.toIntOrNull() ?: 80

Also integer conversion functions, like Int.toString() , String.toInt() , String.toIntOrNull() , each got an overload with
radix parameter, which allows to specify the base of conversion (2 to 36).

onEach is a small, but useful extension function for collections and sequences, which allows to perform some action, possibly
with side-effects, on each element of the collection/sequence in a chain of operations. On iterables it behaves like forEach but
also returns the iterable instance further. And on sequences it returns a wrapping sequence, which applies the given action
lazily as the elements are being iterated.

inputDir.walk()
 .filter { it.isFile && it.name.endsWith(".txt") }
 .onEach { println("Moving $it to $outputDir") }
 .forEach { moveFile(it, File(outputDir, it.toRelativeString(inputDir))) }

These are three general-purpose extension functions applicable to any receiver.

Scope control for implicit receivers in DSLs

rem operator

Standard library

String to number conversions

onEach()

also(), takeIf() and takeUnless()

14

https://github.com/Kotlin/KEEP/blob/master/proposals/scope-control-for-implicit-receivers.md
https://youtrack.jetbrains.com/issue/KT-14650

also is like apply : it takes the receiver, does some action on it, and returns that receiver. The difference is that in the block
inside apply the receiver is available as this , while in the block inside also it's available as it (and you can give it another
name if you want). This comes handy when you do not want to shadow this from the outer scope:

fun Block.copy() = Block().also {
 it.content = this.content
}

takeIf is like filter for a single value. It checks whether the receiver meets the predicate, and returns the receiver, if it does
or null if it doesn't. Combined with an elvis-operator and early returns it allows to write constructs like:

val outDirFile = File(outputDir.path).takeIf { it.exists() } ?: return false
// do something with existing outDirFile

 val index = input.indexOf(keyword).takeIf { it >= 0 } ?: error("keyword not found")
 // do something with index of keyword in input string, given that it's found

takeUnless is the same as takeIf , but it takes the inverted predicate. It returns the receiver when it doesn't meet the
predicate and null otherwise. So one of the examples above could be rewritten with takeUnless as following:

val index = input.indexOf(keyword).takeUnless { it < 0 } ?: error("keyword not found")

It is also convenient to use when you have a callable reference instead of the lambda:

 val result = string.takeUnless(String::isEmpty)

This API can be used to group a collection by key and fold each group simultaneously. For example, it can be used to count the
number of words starting with each letter:

 val frequencies = words.groupingBy { it.first() }.eachCount()

These functions can be used for easy copying of maps:

class ImmutablePropertyBag(map: Map<String, Any>) {
 private val mapCopy = map.toMap()
}

The operator plus provides a way to add key-value pair(s) to a read-only map producing a new map, however there was not a
simple way to do the opposite: to remove a key from the map you have to resort to less straightforward ways to like
Map.filter() or Map.filterKeys() . Now the operator minus fills this gap. There are 4 overloads available: for removing a
single key, a collection of keys, a sequence of keys and an array of keys.

 val map = mapOf("key" to 42)
 val emptyMap = map - "key"

These functions can be used to find the lowest and greatest of two or three given values, where values are primitive numbers
or Comparable objects. There is also an overload of each function that take an additional Comparator instance, if you want to
compare objects that are not comparable themselves.

groupingBy()

Map.toMap() and Map.toMutableMap()

Map.minus(key)

minOf() and maxOf()

15

 val list1 = listOf("a", "b")
 val list2 = listOf("x", "y", "z")
 val minSize = minOf(list1.size, list2.size)
 val longestList = maxOf(list1, list2, compareBy { it.size })

Similar to the Array constructor, there are now functions that create List and MutableList instances and initialize each
element by calling a lambda:

 val squares = List(10) { index -> index * index }
 val mutable = MutableList(10) { 0 }

This extension on Map returns an existing value corresponding to the given key or throws an exception, mentioning which key
was not found. If the map was produced with withDefault , this function will return the default value instead of throwing an
exception.

 val map = mapOf("key" to 42)
 // returns non-nullable Int value 42
 val value: Int = map.getValue("key")

 val mapWithDefault = map.withDefault { k -> k.length }
 // returns 4
 val value2 = mapWithDefault.getValue("key2")

 // map.getValue("anotherKey") // <- this will throw NoSuchElementException

These abstract classes can be used as base classes when implementing Kotlin collection classes. For implementing read-only
collections there are AbstractCollection , AbstractList , AbstractSet and AbstractMap , and for mutable collections there
are AbstractMutableCollection , AbstractMutableList , AbstractMutableSet and AbstractMutableMap . On JVM these
abstract mutable collections inherit most of their functionality from JDK's abstract collections.

The standard library now provides a set of functions for element-by-element operations on arrays: comparison (contentEquals
and contentDeepEquals), hash code calculation (contentHashCode and contentDeepHashCode), and conversion to a string
(contentToString and contentDeepToString). They're supported both for the JVM (where they act as aliases for the
corresponding functions in java.util.Arrays) and for JS (where the implementation is provided in the Kotlin standard library).

 val array = arrayOf("a", "b", "c")
 println(array.toString()) // JVM implementation: type-and-hash gibberish
 println(array.contentToString()) // nicely formatted as list

Kotlin has now the option of generating Java 8 bytecode (-jvm-target 1.8 command line option or the corresponding options
in Ant/Maven/Gradle). For now this doesn't change the semantics of the bytecode (in particular, default methods in interfaces
and lambdas are generated exactly as in Kotlin 1.0), but we plan to make further use of this later.

Array-like List instantiation functions

Map.getValue()

Abstract collections

Array manipulation functions

JVM Backend

Java 8 bytecode support

Java 8 standard library support

16

There are now separate versions of the standard library supporting the new JDK APIs added in Java 7 and 8. If you need access
to the new APIs, use kotlin-stdlib-jre7 and kotlin-stdlib-jre8 maven artifacts instead of the standard kotlin-stdlib .
These artifacts are tiny extensions on top of kotlin-stdlib and they bring it to your project as a transitive dependency.

Kotlin now supports storing parameter names in the bytecode. This can be enabled using the -java-parameters command
line option.

The compiler now inlines values of const val properties into the locations where they are used.

The box classes used for capturing mutable closure variables in lambdas no longer have volatile fields. This change improves
performance, but can lead to new race conditions in some rare usage scenarios. If you're affected by this, you need to provide
your own synchronization for accessing the variables.

Kotlin now integrates with the javax.script API (JSR-223). The API allows to evaluate snippets of code at runtime:

val engine = ScriptEngineManager().getEngineByExtension("kts")!!
engine.eval("val x = 3")
println(engine.eval("x + 2")) // Prints out 5

See here for a larger example project using the API.

To prepare for Java 9 support, the extension functions and properties in the kotlin-reflect.jar library have been moved to
the package kotlin.reflect.full . The names in the old package (kotlin.reflect) are deprecated and will be removed in
Kotlin 1.2. Note that the core reflection interfaces (such as KClass) are part of the Kotlin standard library, not kotlin-reflect ,
and are not affected by the move.

A much larger part of the Kotlin standard library can now be used from code compiled to JavaScript. In particular, key classes
such as collections (ArrayList , HashMap etc.), exceptions (IllegalArgumentException etc.) and a few others
(StringBuilder , Comparator) are now defined under the kotlin package. On the JVM, the names are type aliases for the
corresponding JDK classes, and on the JS, the classes are implemented in the Kotlin standard library.

JavaScript backend now generates more statically checkable code, which is friendlier to JS code processing tools, like minifiers,
optimisers, linters, etc.

If you need to access a class implemented in JavaScript from Kotlin in a typesafe way, you can write a Kotlin declaration using the
external modifier. (In Kotlin 1.0, the @native annotation was used instead.) Unlike the JVM target, the JS one permits to use
external modifier with classes and properties. For example, here's how you can declare the DOM Node class:

Parameter names in the bytecode

Constant inlining

Mutable closure variables

javax.script support

kotlin.re0ect.full

JavaScript Backend

Uni1ed standard library

Better code generation

The external modi1er

17

https://docs.oracle.com/javase/8/docs/api/javax/script/package-summary.html
https://github.com/JetBrains/kotlin/tree/master/libraries/examples/kotlin-jsr223-local-example
https://blog.jetbrains.com/kotlin/2017/01/kotlin-1-1-whats-coming-in-the-standard-library/

external class Node {
 val firstChild: Node

 fun appendChild(child: Node): Node

 fun removeChild(child: Node): Node

 // etc
}

You can now describe declarations which should be imported from JavaScript modules more precisely. If you add the
@JsModule("<module-name>") annotation on an external declaration it will be properly imported to a module system (either
CommonJS or AMD) during the compilation. For example, with CommonJS the declaration will be imported via require(...)
function. Additionally, if you want to import a declaration either as a module or as a global JavaScript object, you can use the
@JsNonModule annotation.

For example, here's how you can import JQuery into a Kotlin module:

external interface JQuery {
 fun toggle(duration: Int = definedExternally): JQuery
 fun click(handler: (Event) -> Unit): JQuery
}

@JsModule("jquery")
@JsNonModule
@JsName("$")
external fun jquery(selector: String): JQuery

In this case, JQuery will be imported as a module named jquery . Alternatively, it can be used as a $-object, depending on what
module system Kotlin compiler is configured to use.

You can use these declarations in your application like this:

fun main(args: Array<String>) {
 jquery(".toggle-button").click {
 jquery(".toggle-panel").toggle(300)
 }
}

Improved import handling

18

Multiplatform projects
Other language features
Standard library
JVM backend
JavaScript backend

Multiplatform projects are a new experimental feature in Kotlin 1.2, allowing you to reuse code between target platforms
supported by Kotlin – JVM, JavaScript and (in the future) Native. In a multiplatform project, you have three kinds of modules:

A common module contains code that is not specific to any platform, as well as declarations without implementation of
platform-dependent APIs.
A platform module contains implementations of platform-dependent declarations in the common module for a specific
platform, as well as other platform-dependent code.
A regular module targets a specific platform and can either be a dependency of platform modules or depend on platform
modules.

When you compile a multiplatform project for a specific platform, the code for both the common and platform-specific parts is
generated.

A key feature of the multiplatform project support is the possibility to express dependencies of common code on platform-
specific parts through expected and actual declarations. An expected declaration specifies an API (class, interface,
annotation, top-level declaration etc.). An actual declaration is either a platform-dependent implementation of the API or a
typealias referring to an existing implementation of the API in an external library. Here's an example:

In common code:

// expected platform-specific API:
expect fun hello(world: String): String

fun greet() {
 // usage of the expected API:
 val greeting = hello("multi-platform world")
 println(greeting)
}

expect class URL(spec: String) {
 open fun getHost(): String
 open fun getPath(): String
}

In JVM platform code:

actual fun hello(world: String): String =
 "Hello, $world, on the JVM platform!"

// using existing platform-specific implementation:
actual typealias URL = java.net.URL

See the documentation for details and steps to build a multiplatform project.

What's New in Kotlin 1.2

Table of Contents

—
—
—
—
—

Multiplatform Projects (experimental)

—

—

—

Other Language Features

Array literals in annotations

19

http://kotlinlang.org/docs/reference/multiplatform.html

Starting with Kotlin 1.2, array arguments for annotations can be passed with the new array literal syntax instead of the arrayOf
function:

@CacheConfig(cacheNames = ["books", "default"])
public class BookRepositoryImpl {
 // ...
}

The array literal syntax is constrained to annotation arguments.

The lateinit modifier can now be used on top-level properties and local variables. The latter can be used, for example, when
a lambda passed as a constructor argument to one object refers to another object which has to be defined later:

 // A cycle of three nodes:
 lateinit var third: Node<Int>

 val second = Node(2, next = { third })
 val first = Node(1, next = { second })

 third = Node(3, next = { first })

You can now check whether a lateinit var has been initialized using isInitialized on the property reference:

 println("isInitialized before assignment: " + this::lateinitVar.isInitialized)
 lateinitVar = "value"
 println("isInitialized after assignment: " + this::lateinitVar.isInitialized)

Inline functions are now allowed to have default values for their inlined functional parameters:

inline fun <E> Iterable<E>.strings(transform: (E) -> String = { it.toString() }) =
 map { transform(it) }

val defaultStrings = listOf(1, 2, 3).strings()
val customStrings = listOf(1, 2, 3).strings { "($it)" }

The Kotlin compiler can now use information from type casts in type inference. If you’re calling a generic method that returns a
type parameter T and casting the return value to a specific type Foo , the compiler now understands that T for this call needs
to be bound to the type Foo .

This is particularly important for Android developers, since the compiler can now correctly analyze generic findViewById calls in
Android API level 26:

val button = findViewById(R.id.button) as Button

When a variable is assigned from a safe call expression and checked for null, the smart cast is now applied to the safe call
receiver as well:

Lateinit top-level properties and local variables

Checking whether a lateinit var is initialized

Inline functions with default functional parameters

Information from explicit casts is used for type inference

Smart cast improvements

20

 val firstChar = (s as? CharSequence)?.firstOrNull()
 if (firstChar != null)
 return s.count { it == firstChar } // s: Any is smart cast to CharSequence

 val firstItem = (s as? Iterable<*>)?.firstOrNull()
 if (firstItem != null)
 return s.count { it == firstItem } // s: Any is smart cast to Iterable<*>

Also, smart casts in a lambda are now allowed for local variables that are only modified before the lambda:

 var x: String? = null
 if (flag) x = "Yahoo!"

 run {
 if (x != null) {
 println(x.length) // x is smart cast to String
 }
 }

A bound callable reference to a member of this can now be written without explicit receiver, ::foo instead of this::foo .
This also makes callable references more convenient to use in lambdas where you refer to a member of the outer receiver.

Earlier, Kotlin used assignments made inside a try block for smart casts after the block, which could break type- and null-safety
and lead to runtime failures. This release fixes this issue, making the smart casts more strict, but breaking some code that
relied on such smart casts.

To switch to the old smart casts behavior, pass the fallback flag -Xlegacy-smart-cast-after-try as the compiler argument. It
will become deprecated in Kotlin 1.3.

When a data class derived from a type that already had the copy function with the same signature, the copy implementation
generated for the data class used the defaults from the supertype, leading to counter-intuitive behavior, or failed at runtime if
there were no default parameters in the supertype.

Inheritance that leads to a copy conflict has become deprecated with a warning in Kotlin 1.2 and will be an error in Kotlin 1.3.

Inside enum entries, defining a nested type that is not an inner class has been deprecated due to issues in the initialization
logic. This causes a warning in Kotlin 1.2 and will become an error in Kotlin 1.3.

For consistency with array literals in annotations, passing a single item for a vararg parameter in the named form (foo(items =
i)) has been deprecated. Please use the spread operator with the corresponding array factory functions:

foo(items = *intArrayOf(1))

There is an optimization that removes redundant arrays creation in such cases, which prevents performance degradation. The
single-argument form produces warnings in Kotlin 1.2 and is to be dropped in Kotlin 1.3.

Support for ::foo as a shorthand for this::foo

Breaking change: sound smart casts after try blocks

Deprecation: data classes overriding copy

Deprecation: nested types in enum entries

Deprecation: single named argument for vararg

Deprecation: inner classes of generic classes extending Throwable

21

Inner classes of generic types that inherit from Throwable could violate type-safety in a throw-catch scenario and thus have
been deprecated, with a warning in Kotlin 1.2 and an error in Kotlin 1.3.

Mutating the backing field of a read-only property by assigning field = ... in the custom getter has been deprecated, with a
warning in Kotlin 1.2 and an error in Kotlin 1.3.

The Kotlin standard library is now fully compatible with the Java 9 module system, which forbids split packages (multiple jar files
declaring classes in the same package). In order to support that, new artifacts kotlin-stdlib-jdk7 and kotlin-stdlib-jdk8
are introduced, which replace the old kotlin-stdlib-jre7 and kotlin-stdlib-jre8 .

The declarations in the new artifacts are visible under the same package names from the Kotlin point of view, but have different
package names for Java. Therefore, switching to the new artifacts will not require any changes to your source code.

Another change made to ensure compatibility with the new module system is removing the deprecated declarations in the
kotlin.reflect package from the kotlin-reflect library. If you were using them, you need to switch to using the
declarations in the kotlin.reflect.full package, which is supported since Kotlin 1.1.

New extensions for Iterable<T> , Sequence<T> , and CharSequence cover such use cases as buffering or batch processing
(chunked), sliding window and computing sliding average (windowed) , and processing pairs of subsequent items
(zipWithNext):

 val items = (1..9).map { it * it }

 val chunkedIntoLists = items.chunked(4)
 val points3d = items.chunked(3) { (x, y, z) -> Triple(x, y, z) }
 val windowed = items.windowed(4)
 val slidingAverage = items.windowed(4) { it.average() }
 val pairwiseDifferences = items.zipWithNext { a, b -> b - a }

A set of extension functions was added for manipulating lists: fill , replaceAll and shuffle for MutableList , and
shuffled for read-only List :

 val items = (1..5).toMutableList()

 items.shuffle()
 println("Shuffled items: $items")

 items.replaceAll { it * 2 }
 println("Items doubled: $items")

 items.fill(5)
 println("Items filled with 5: $items")

Satisfying the longstanding request, Kotlin 1.2 adds the kotlin.math API for math operations that is common for JVM and JS and
contains the following:

Constants: PI and E ;

Deprecation: mutating backing 1eld of a read-only property

Standard Library

Kotlin standard library artifacts and split packages

windowed, chunked, zipWithNext

1ll, replaceAll, shu7e/shu7ed

Math operations in kotlin-stdlib

—

22

Trigonometric: cos , sin , tan and inverse of them: acos , asin , atan , atan2 ;

Hyperbolic: cosh , sinh , tanh and their inverse: acosh , asinh , atanh

Exponentation: pow (an extension function), sqrt , hypot , exp , expm1 ;

Logarithms: log , log2 , log10 , ln , ln1p ;

Rounding:
ceil , floor , truncate , round (half to even) functions;

roundToInt , roundToLong (half to integer) extension functions;

Sign and absolute value:
abs and sign functions;

absoluteValue and sign extension properties;

withSign extension function;

max and min of two values;

Binary representation:
ulp extension property;

nextUp , nextDown , nextTowards extension functions;

toBits , toRawBits , Double.fromBits (these are in the kotlin package).

The same set of functions (but without constants) is also available for Float arguments.

Kotlin 1.2 introduces a set of functions for operating with BigInteger and BigDecimal and creating them from other numeric
types. These are:

toBigInteger for Int and Long ;

toBigDecimal for Int , Long , Float , Double , and BigInteger ;

Arithmetic and bitwise operator functions:
Binary operators + , - , * , / , % and infix functions and , or , xor , shl , shr ;

Unary operators - , ++ , -- , and a function inv .

New functions were added for converting Double and Float to and from their bit representations:

toBits and toRawBits returning Long for Double and Int for Float ;

Double.fromBits and Float.fromBits for creating floating point numbers from the bit representation.

The kotlin.text.Regex class has become Serializable and can now be used in serializable hierarchies.

The Closeable.use function calls Throwable.addSuppressed when an exception is thrown during closing the resource after
some other exception.

To enable this behavior you need to have kotlin-stdlib-jdk7 in your dependencies.

Ever since version 1.0, Kotlin supported expressions with complex control flow, such as try-catch expressions and inline
function calls. Such code is valid according to the Java Virtual Machine specification. Unfortunately, some bytecode processing
tools do not handle such code quite well when such expressions are present in the arguments of constructor calls.

—

—

—

—

—
—

—

—
—

—

—

—

—
—

—

—

Operators and conversions for BigInteger and BigDecimal

—

—

—
—

—

Floating point to bits conversions

—

—

Regex is now serializable

Closeable.use calls Throwable.addSuppressed if available

JVM Backend

Constructor calls normalization

23

To mitigate this problem for the users of such bytecode processing tools, we’ve added a command-line option (-Xnormalize-
constructor-calls=MODE) that tells the compiler to generate more Java-like bytecode for such constructs. Here MODE is one of:

disable (default) – generate bytecode in the same way as in Kotlin 1.0 and 1.1;

enable – generate Java-like bytecode for constructor calls. This can change the order in which the classes are loaded and
initialized;
preserve-class-initialization – generate Java-like bytecode for constructor calls, ensuring that the class initialization
order is preserved. This can affect overall performance of your application; use it only if you have some complex state
shared between multiple classes and updated on class initialization.

The “manual” workaround is to store the values of sub-expressions with control flow in variables, instead of evaluating them
directly inside the call arguments. It’s similar to -Xnormalize-constructor-calls=enable .

Before Kotlin 1.2, interface members overriding Java-default methods while targeting JVM 1.6 produced a warning on super calls:
Super calls to Java default methods are deprecated in JVM target 1.6. Recompile with '-jvm-target 1.8' . In
Kotlin 1.2, there's an error instead, thus requiring any such code to be compiled with JVM target 1.8.

Calling x.equals(null) on a platform type that is mapped to a Java primitive (Int! , Boolean! , Short !, Long! , Float! ,
Double! , Char!) incorrectly returned true when x was null. Starting with Kotlin 1.2, calling x.equals(...) on a null value of
a platform type throws an NPE (but x == ... does not).

To return to the pre-1.2 behavior, pass the flag -Xno-exception-on-explicit-equals-for-boxed-null to the compiler.

Inline extension functions that were called on a null value of a platform type did not check the receiver for null and would thus
allow null to escape into the other code. Kotlin 1.2 forces this check at the call sites, throwing an exception if the receiver is null.

To switch to the old behavior, pass the fallback flag -Xno-receiver-assertions to the compiler.

The JS typed arrays support that translates Kotlin primitive arrays, such as IntArray , DoubleArray , into JavaScript typed arrays,
that was previously an opt-in feature, has been enabled by default.

The compiler now provides an option to treat all warnings as errors. Use -Werror on the command line, or the following Gradle
snippet:

compileKotlin {
 kotlinOptions.allWarningsAsErrors = true
}

—

—

—

Java-default method calls

Breaking change: consistent behavior of x.equals(null) for platform types

Breaking change: 1x for platform null escaping through an inlined extension receiver

JavaScript Backend

TypedArrays support enabled by default

Tools

Warnings as errors

24

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays

Getting Started

Package specification should be at the top of the source file:

package my.demo

import java.util.*

// ...

It is not required to match directories and packages: source files can be placed arbitrarily in the file system.

See Packages.

Function having two Int parameters with Int return type:

fun sum(a: Int, b: Int): Int {
 return a + b
}

Function with an expression body and inferred return type:

fun sum(a: Int, b: Int) = a + b

Function returning no meaningful value:

fun printSum(a: Int, b: Int): Unit {
 println("sum of $a and $b is ${a + b}")
}

Unit return type can be omitted:

fun printSum(a: Int, b: Int) {
 println("sum of $a and $b is ${a + b}")
}

See Functions.

Assign-once (read-only) local variable:

Basic Syntax

De5ning packages

De5ning functions

De5ning variables

25

 val a: Int = 1 // immediate assignment
 val b = 2 // `Int` type is inferred
 val c: Int // Type required when no initializer is provided
 c = 3 // deferred assignment

Mutable variable:

 var x = 5 // `Int` type is inferred
 x += 1

Top-level variables:

val PI = 3.14
var x = 0

fun incrementX() {
 x += 1
}

See also Properties And Fields.

Just like Java and JavaScript, Kotlin supports end-of-line and block comments.

// This is an end-of-line comment

/* This is a block comment
 on multiple lines. */

Unlike Java, block comments in Kotlin can be nested.

See Documenting Kotlin Code for information on the documentation comment syntax.

 var a = 1
 // simple name in template:
 val s1 = "a is $a"

 a = 2
 // arbitrary expression in template:
 val s2 = "${s1.replace("is", "was")}, but now is $a"

See String templates.

fun maxOf(a: Int, b: Int): Int {
 if (a > b) {
 return a
 } else {
 return b
 }
}

Using if as an expression:

fun maxOf(a: Int, b: Int) = if (a > b) a else b

Comments

Using string templates

Using conditional expressions

26

See if-expressions.

A reference must be explicitly marked as nullable when null value is possible.

Return null if str does not hold an integer:

fun parseInt(str: String): Int? {
 // ...
}

Use a function returning nullable value:

fun printProduct(arg1: String, arg2: String) {
 val x = parseInt(arg1)
 val y = parseInt(arg2)

 // Using `x * y` yields error because they may hold nulls.
 if (x != null && y != null) {
 // x and y are automatically cast to non-nullable after null check
 println(x * y)
 }
 else {
 println("either '$arg1' or '$arg2' is not a number")
 }
}

or

 // ...
 if (x == null) {
 println("Wrong number format in arg1: '$arg1'")
 return
 }
 if (y == null) {
 println("Wrong number format in arg2: '$arg2'")
 return
 }

 // x and y are automatically cast to non-nullable after null check
 println(x * y)

See Null-safety.

The is operator checks if an expression is an instance of a type. If an immutable local variable or property is checked for a
specific type, there's no need to cast it explicitly:

fun getStringLength(obj: Any): Int? {
 if (obj is String) {
 // `obj` is automatically cast to `String` in this branch
 return obj.length
 }

 // `obj` is still of type `Any` outside of the type-checked branch
 return null
}

or

Using nullable values and checking for null

Using type checks and automatic casts

27

fun getStringLength(obj: Any): Int? {
 if (obj !is String) return null

 // `obj` is automatically cast to `String` in this branch
 return obj.length
}

or even

fun getStringLength(obj: Any): Int? {
 // `obj` is automatically cast to `String` on the right-hand side of `&&`
 if (obj is String && obj.length > 0) {
 return obj.length
 }

 return null
}

See Classes and Type casts.

 val items = listOf("apple", "banana", "kiwifruit")
 for (item in items) {
 println(item)
 }

or

 val items = listOf("apple", "banana", "kiwifruit")
 for (index in items.indices) {
 println("item at $index is ${items[index]}")
 }

See for loop.

 val items = listOf("apple", "banana", "kiwifruit")
 var index = 0
 while (index < items.size) {
 println("item at $index is ${items[index]}")
 index++
 }

See while loop.

fun describe(obj: Any): String =
 when (obj) {
 1 -> "One"
 "Hello" -> "Greeting"
 is Long -> "Long"
 !is String -> "Not a string"
 else -> "Unknown"
 }

See when expression.

Using a for loop

Using a while loop

Using when expression

28

Check if a number is within a range using in operator:

 val x = 10
 val y = 9
 if (x in 1..y+1) {
 println("fits in range")
 }

Check if a number is out of range:

 val list = listOf("a", "b", "c")

 if (-1 !in 0..list.lastIndex) {
 println("-1 is out of range")
 }
 if (list.size !in list.indices) {
 println("list size is out of valid list indices range too")
 }

Iterating over a range:

 for (x in 1..5) {
 print(x)
 }

or over a progression:

 for (x in 1..10 step 2) {
 print(x)
 }
 println()
 for (x in 9 downTo 0 step 3) {
 print(x)
 }

See Ranges.

Iterating over a collection:

 for (item in items) {
 println(item)
 }

Checking if a collection contains an object using in operator:

 when {
 "orange" in items -> println("juicy")
 "apple" in items -> println("apple is fine too")
 }

Using lambda expressions to filter and map collections:

Using ranges

Using collections

29

 fruits
 .filter { it.startsWith("a") }
 .sortedBy { it }
 .map { it.toUpperCase() }
 .forEach { println(it) }

See Higher-order functions and Lambdas.

 val rectangle = Rectangle(5.0, 2.0) //no 'new' keyword required
 val triangle = Triangle(3.0, 4.0, 5.0)

See classes and objects and instances.

Creating basic classes and their instances:

30

A collection of random and frequently used idioms in Kotlin. If you have a favorite idiom, contribute it by sending a pull request.

data class Customer(val name: String, val email: String)

provides a Customer class with the following functionality:

getters (and setters in case of vars) for all properties

equals()

hashCode()

toString()

copy()

component1() , component2() , …, for all properties (see Data classes)

fun foo(a: Int = 0, b: String = "") { ... }

val positives = list.filter { x -> x > 0 }

Or alternatively, even shorter:

val positives = list.filter { it > 0 }

println("Name $name")

when (x) {
 is Foo -> ...
 is Bar -> ...
 else -> ...
}

for ((k, v) in map) {
 println("$k -> $v")
}

k , v can be called anything.

Idioms

Creating DTOs (POJOs/POCOs)

—

—

—

—

—

—

Default values for function parameters

Filtering a list

String Interpolation

Instance Checks

Traversing a map/list of pairs

Using ranges

31

for (i in 1..100) { ... } // closed range: includes 100
for (i in 1 until 100) { ... } // half-open range: does not include 100
for (x in 2..10 step 2) { ... }
for (x in 10 downTo 1) { ... }
if (x in 1..10) { ... }

val list = listOf("a", "b", "c")

val map = mapOf("a" to 1, "b" to 2, "c" to 3)

println(map["key"])
map["key"] = value

val p: String by lazy {
 // compute the string
}

fun String.spaceToCamelCase() { ... }

"Convert this to camelcase".spaceToCamelCase()

object Resource {
 val name = "Name"
}

val files = File("Test").listFiles()

println(files?.size)

val files = File("Test").listFiles()

println(files?.size ?: "empty")

Read-only list

Read-only map

Accessing a map

Lazy property

Extension Functions

Creating a singleton

If not null shorthand

If not null and else shorthand

Executing a statement if null

32

val values = ...
val email = values["email"] ?: throw IllegalStateException("Email is missing!")

val emails = ... // might be empty
val mainEmail = emails.firstOrNull() ?: ""

val value = ...

value?.let {
 ... // execute this block if not null
}

val value = ...

val mapped = value?.let { transformValue(it) } ?: defaultValueIfValueIsNull

fun transform(color: String): Int {
 return when (color) {
 "Red" -> 0
 "Green" -> 1
 "Blue" -> 2
 else -> throw IllegalArgumentException("Invalid color param value")
 }
}

fun test() {
 val result = try {
 count()
 } catch (e: ArithmeticException) {
 throw IllegalStateException(e)
 }

 // Working with result
}

fun foo(param: Int) {
 val result = if (param == 1) {
 "one"
 } else if (param == 2) {
 "two"
 } else {
 "three"
 }
}

Get 1rst item of a possibly empty collection

Execute if not null

Map nullable value if not null

Return on when statement

'try/catch' expression

'if' expression

33

fun arrayOfMinusOnes(size: Int): IntArray {
 return IntArray(size).apply { fill(-1) }
}

fun theAnswer() = 42

This is equivalent to

fun theAnswer(): Int {
 return 42
}

This can be effectively combined with other idioms, leading to shorter code. E.g. with the when-expression:

fun transform(color: String): Int = when (color) {
 "Red" -> 0
 "Green" -> 1
 "Blue" -> 2
 else -> throw IllegalArgumentException("Invalid color param value")
}

class Turtle {
 fun penDown()
 fun penUp()
 fun turn(degrees: Double)
 fun forward(pixels: Double)
}

val myTurtle = Turtle()
with(myTurtle) { //draw a 100 pix square
 penDown()
 for(i in 1..4) {
 forward(100.0)
 turn(90.0)
 }
 penUp()
}

val stream = Files.newInputStream(Paths.get("/some/file.txt"))
stream.buffered().reader().use { reader ->
 println(reader.readText())
}

Builder-style usage of methods that return Unit

Single-expression functions

Calling multiple methods on an object instance ('with')

Java 7's try with resources

Convenient form for a generic function that requires the generic type information

34

// public final class Gson {
// ...
// public <T> T fromJson(JsonElement json, Class<T> classOfT) throws JsonSyntaxException {
// ...

inline fun <reified T: Any> Gson.fromJson(json: JsonElement): T = this.fromJson(json, T::class.java)

val b: Boolean? = ...
if (b == true) {
 ...
} else {
 // `b` is false or null
}

Consuming a nullable Boolean

35

This page contains the current coding style for the Kotlin language.

Source code organization
Naming rules
Formatting
Documentation comments
Avoiding redundant constructs
Idiomatic use of language features
Coding conventions for libraries

To configure the IntelliJ formatter according to this style guide, please install Kotlin plugin version 1.2.20 or newer, go to Settings
| Editor | Code Style | Kotlin, click on "Set from…" link in the upper right corner, and select "Predefined style / Kotlin style guide"
from the menu.

To verify that your code is formatted according to the style guide, go to the inspection settings and enable the "Kotlin | Style
issues | File is not formatted according to project settings" inspection. Additional inspections that verify other issues described
in the style guide (such as naming conventions) are enabled by default.

In mixed-language projects, Kotlin source files should reside in the same source root as the Java source files, and follow the
same directory structure (each file should be stored in the directory corresponding to each package statement).

In pure Kotlin projects, the recommended directory structure is to follow the package structure with the common root package
omitted (e.g. if all the code in the project is in the "org.example.kotlin" package and its subpackages, files with the
"org.example.kotlin" package should be placed directly under the source root, and files in "org.example.kotlin.foo.bar" should be
in the "foo/bar" subdirectory of the source root).

If a Kotlin file contains a single class (potentially with related top-level declarations), its name should be the same as the name of
the class, with the .kt extension appended. If a file contains multiple classes, or only top-level declarations, choose a name
describing what the file contains, and name the file accordingly. Use camel humps with an uppercase first letter (e.g.
ProcessDeclarations.kt).

The name of the file should describe what the code in the file does. Therefore, you should avoid using meaningless words such
as "Util" in file names.

Placing multiple declarations (classes, top-level functions or properties) in the same Kotlin source file is encouraged as long as
these declarations are closely related to each other semantically and the file size remains reasonable (not exceeding a few
hundred lines).

In particular, when defining extension functions for a class which are relevant for all clients of this class, put them in the same
file where the class itself is defined. When defining extension functions that make sense only for a specific client, put them next
to the code of that client. Do not create files just to hold "all extensions of Foo".

Generally, the contents of a class is sorted in the following order:

Property declarations and initializer blocks
Secondary constructors
Method declarations

Coding Conventions

—
—
—
—
—
—
—

Applying the style guide

Source code organization

Directory structure

Source 1le names

Source 1le organization

Class layout

—
—
—

36

Companion object

Do not sort the method declarations alphabetically or by visibility, and do not separate regular methods from extension
methods. Instead, put related stuff together, so that someone reading the class from top to bottom would be able to follow the
logic of what's happening. Choose an order (either higher-level stuff first, or vice versa) and stick to it.

Put nested classes next to the code that uses those classes. If the classes are intended to be used externally and aren't
referenced inside the class, put them in the end, after the companion object.

When implementing an interface, keep the implementing members in the same order as members of the interface (if necessary,
interspersed with additional private methods used for the implementation)

Always put overloads next to each other in a class.

Kotlin follows the Java naming conventions. In particular:

Names of packages are always lower case and do not use underscores (org.example.myproject). Using multi-word names is
generally discouraged, but if you do need to use multiple words, you can either simply concatenate them together or use camel
humps (org.example.myProject).

Names of classes and objects start with an upper case letter and use camel humps:

open class DeclarationProcessor { ... }

object EmptyDeclarationProcessor : DeclarationProcessor() { ... }

Names of functions, properties and local variables start with a lower case letter and use camel humps and no underscores:

fun processDeclarations() { ... }
var declarationCount = ...

Exception: factory functions used to create instances of classes can have the same name as the class being created:

abstract class Foo { ... }

class FooImpl : Foo { ... }

fun Foo(): Foo { return FooImpl(...) }

In tests (and only in tests), it's acceptable to use method names with spaces enclosed in backticks. (Note that such method
names are currently not supported by the Android runtime.) Underscores in method names are also allowed in test code.

class MyTestCase {
 @Test fun `ensure everything works`() {
 }

 @Test fun ensureEverythingWorks_onAndroid() {
 }
}

—

Interface implementation layout

Overload layout

Naming rules

Function names

Names for test methods

Property names

37

Names of constants (properties marked with const , or top-level or object val properties with no custom get function that
hold deeply immutable data) should use uppercase underscore-separated names:

const val MAX_COUNT = 8
val USER_NAME_FIELD = "UserName"

Names of top-level or object properties which hold objects with behavior or mutable data should use regular camel-hump
names:

val mutableCollection: MutableSet<String> = HashSet()

Names of properties holding references to singleton objects can use the same naming style as object declarations:

val PersonComparator: Comparator<Person> = ...

For enum constants, it's OK to use either uppercase underscore-separated names (enum class Color { RED, GREEN }) or
regular camel-humps names starting with an uppercase letter, depending on the usage.

If a class has two properties which are conceptually the same but one is part of a public API and another is an implementation
detail, use an underscore as the prefix for the name of the private property:

class C {
 private val _elementList = mutableListOf<Element>()

 val elementList: List<Element>
 get() = _elementList
}

The name of a class is usually a noun or a noun phrase explaining what the class is: List , PersonReader .

The name of a method is usually a verb or a verb phrase saying what the method does: close , readPersons . The name
should also suggest if the method is mutating the object or returning a new one. For instance sort is sorting a collection in
place, while sorted is returning a sorted copy of the collection.

The names should make it clear what the purpose of the entity is, so it's best to avoid using meaningless words (Manager ,
Wrapper etc.) in names.

When using an acronym as part of a declaration name, capitalize it if it consists of two letters (IOStream); capitalize only the first
letter if it is longer (XmlFormatter , HttpInputStream).

In most cases, Kotlin follows the Java coding conventions.

Use 4 spaces for indentation. Do not use tabs.

For curly braces, put the opening brace in the end of the line where the construct begins, and the closing brace on a separate
line aligned vertically with the opening construct.

if (elements != null) {
 for (element in elements) {
 // ...
 }
}

(Note: In Kotlin, semicolons are optional, and therefore line breaks are significant. The language design assumes Java-style
braces, and you may encounter surprising behavior if you try to use a different formatting style.)

Names for backing properties

Choosing good names

Formatting

38

Put spaces around binary operators (a + b). Exception: don't put spaces around the "range to" operator (0..i).

Do not put spaces around unary operators (a++)

Put spaces between control flow keywords (if , when , for and while) and the corresponding opening parenthesis.

Do not put a space before an opening parenthesis in a primary constructor declaration, method declaration or method call.

class A(val x: Int)

fun foo(x: Int) { }

fun bar() {
 foo(1)
}

Never put a space after (, [, or before] ,) .

Never put a space around . or ?. : foo.bar().filter { it > 2 }.joinToString() , foo?.bar()

Put a space after // : // This is a comment

Do not put spaces around angle brackets used to specify type parameters: class Map<K, V> { ... }

Do not put spaces around :: : Foo::class , String::length

Do not put a space before ? used to mark a nullable type: String?

As a general rule, avoid horizontal alignment of any kind. Renaming an identifier to a name with a different length should not
affect the formatting of either the declaration or any of the usages.

Put a space before : in the following cases:

when it's used to separate a type and a supertype;
when delegating to a superclass constructor or a different constructor of the same class;
after the object keyword.

Don't put a space before : when it separates a declaration and its type.

Always put a space after : .

abstract class Foo<out T : Any> : IFoo {
 abstract fun foo(a: Int): T
}

class FooImpl : Foo() {
 constructor(x: String) : this(x) {
 //...
 }

 val x = object : IFoo { ... }
}

Classes with a few primary constructor parameters can be written in a single line:

class Person(id: Int, name: String)

Horizontal whitespace

Colon

—
—
—

Class header formatting

39

Classes with longer headers should be formatted so that each primary constructor parameter is in a separate line with
indentation. Also, the closing parenthesis should be on a new line. If we use inheritance, then the superclass constructor call or
list of implemented interfaces should be located on the same line as the parenthesis:

class Person(
 id: Int,
 name: String,
 surname: String
) : Human(id, name) {

 // ...
}

For multiple interfaces, the superclass constructor call should be located first and then each interface should be located in a
different line:

class Person(
 id: Int,
 name: String,
 surname: String
) : Human(id, name),
 KotlinMaker {

 // ...
}

For classes with a long supertype list, put a line break after the colon and align all supertype names vertically:

class MyFavouriteVeryLongClassHolder :
 MyLongHolder<MyFavouriteVeryLongClass>(),
 SomeOtherInterface,
 AndAnotherOne {

 fun foo() {}
}

To clearly separate the class header and body when the class header is long, either put a blank line following the class header
(as in the example above), or put the opening curly brace on a separate line:

class MyFavouriteVeryLongClassHolder :
 MyLongHolder<MyFavouriteVeryLongClass>(),
 SomeOtherInterface,
 AndAnotherOne
{
 fun foo() {}
}

Use regular indent (4 spaces) for constructor parameters.

Rationale: This ensures that properties declared in the primary constructor have the same indentation as properties
declared in the body of a class.

If a declaration has multiple modifiers, always put them in the following order:

Modi1ers

40

public / protected / private / internal
expect / actual
final / open / abstract / sealed / const
external
override
lateinit
tailrec
vararg
suspend
inner
enum / annotation
companion
inline
infix
operator
data

Place all annotations before modifiers:

@Named("Foo")
private val foo: Foo

Unless you're working on a library, omit redundant modifiers (e.g. public).

Annotations are typically placed on separate lines, before the declaration to which they are attached, and with the same
indentation:

@Target(AnnotationTarget.PROPERTY)
annotation class JsonExclude

Annotations without arguments may be placed on the same line:

@JsonExclude @JvmField
var x: String

A single annotation without arguments may be placed on the same line as the corresponding declaration:

@Test fun foo() { ... }

File annotations are placed after the file comment (if any), before the package statement, and are separated from package with
a blank line (to emphasize the fact that they target the file and not the package).

/** License, copyright and whatever */
@file:JvmName("FooBar")

package foo.bar

If the function signature doesn't fit on a single line, use the following syntax:

Annotation formatting

File annotations

Function formatting

41

fun longMethodName(
 argument: ArgumentType = defaultValue,
 argument2: AnotherArgumentType
): ReturnType {
 // body
}

Use regular indent (4 spaces) for function parameters.

Rationale: Consistency with constructor parameters

Prefer using an expression body for functions with the body consisting of a single expression.

fun foo(): Int { // bad
 return 1
}

fun foo() = 1 // good

If the function has an expression body that doesn't fit in the same line as the declaration, put the = sign on the first line. Indent
the expression body by 4 spaces.

fun f(x: String) =
 x.length

For very simple read-only properties, consider one-line formatting:

val isEmpty: Boolean get() = size == 0

For more complex properties, always put get and set keywords on separate lines:

val foo: String
 get() {
 // ...
 }

For properties with an initializer, if the initializer is long, add a line break after the equals sign and indent the initializer by four
spaces:

private val defaultCharset: Charset? =
 EncodingRegistry.getInstance().getDefaultCharsetForPropertiesFiles(file)

If the condition of an if or when statement is multiline, always use curly braces around the body of the statement. Indent each
subsequent line of the condition by 4 spaces relative to statement begin. Put the closing parentheses of the condition together
with the opening curly brace on a separate line:

if (!component.isSyncing &&
 !hasAnyKotlinRuntimeInScope(module)
) {
 return createKotlinNotConfiguredPanel(module)
}

Expression body formatting

Property formatting

Formatting control 0ow statements

42

Rationale: Tidy alignment and clear separation of condition and statement body

Put the else , catch , finally keywords, as well as the while keyword of a do/while loop, on the same line as the preceding
curly brace:

if (condition) {
 // body
} else {
 // else part
}

try {
 // body
} finally {
 // cleanup
}

In a when statement, if a branch is more than a single line, consider separating it from adjacent case blocks with a blank line:

private fun parsePropertyValue(propName: String, token: Token) {
 when (token) {
 is Token.ValueToken ->
 callback.visitValue(propName, token.value)

 Token.LBRACE -> { // ...
 }
 }
}

Put short branches on the same line as the condition, without braces.

when (foo) {
 true -> bar() // good
 false -> { baz() } // bad
}

In long argument lists, put a line break after the opening parenthesis. Indent arguments by 4 spaces. Group multiple closely
related arguments on the same line.

drawSquare(
 x = 10, y = 10,
 width = 100, height = 100,
 fill = true
)

Put spaces around the = sign separating the argument name and value.

When wrapping chained calls, put the . character or the ?. operator on the next line, with a single indent:

val anchor = owner
 ?.firstChild!!
 .siblings(forward = true)
 .dropWhile { it is PsiComment || it is PsiWhiteSpace }

The first call in the chain usually should have a line break before it, but it's OK to omit it if the code makes more sense that way.

Method call formatting

Chained call wrapping

43

In lambda expressions, spaces should be used around the curly braces, as well as around the arrow which separates the
parameters from the body. If a call takes a single lambda, it should be passed outside of parentheses whenever possible.

list.filter { it > 10 }

If assigning a label for a lambda, do not put a space between the label and the opening curly brace:

fun foo() {
 ints.forEach lit@{
 // ...
 }
}

When declaring parameter names in a multiline lambda, put the names on the first line, followed by the arrow and the newline:

appendCommaSeparated(properties) { prop ->
 val propertyValue = prop.get(obj) // ...
}

If the parameter list is too long to fit on a line, put the arrow on a separate line:

foo {
 context: Context,
 environment: Env
 ->
 context.configureEnv(environment)
}

For longer documentation comments, place the opening /** on a separate line and begin each subsequent line with an
asterisk:

/**
 * This is a documentation comment
 * on multiple lines.
 */

Short comments can be placed on a single line:

/** This is a short documentation comment. */

Generally, avoid using @param and @return tags. Instead, incorporate the description of parameters and return values directly
into the documentation comment, and add links to parameters wherever they are mentioned. Use @param and @return only
when a lengthy description is required which doesn't fit into the flow of the main text.

Lambda formatting

Documentation comments

44

// Avoid doing this:

/**
 * Returns the absolute value of the given number.
 * @param number The number to return the absolute value for.
 * @return The absolute value.
 */
fun abs(number: Int) = ...

// Do this instead:

/**
 * Returns the absolute value of the given [number].
 */
fun abs(number: Int) = ...

In general, if a certain syntactic construction in Kotlin is optional and highlighted by the IDE as redundant, you should omit it in
your code. Do not leave unnecessary syntactic elements in code just "for clarity".

If a function returns Unit, the return type should be omitted:

fun foo() { // ": Unit" is omitted here

}

Omit semicolons whenever possible.

Don't use curly braces when inserting a simple variable into a string template. Use curly braces only for longer expressions.

println("$name has ${children.size} children")

Prefer using immutable data to mutable. Always declare local variables and properties as val rather than var if they are not
modified after initialization.

Always use immutable collection interfaces (Collection , List , Set , Map) to declare collections which are not mutated. When
using factory functions to create collection instances, always use functions that return immutable collection types when
possible:

Avoiding redundant constructs

Unit

Semicolons

String templates

Idiomatic use of language features

Immutability

45

// Bad: use of mutable collection type for value which will not be mutated
fun validateValue(actualValue: String, allowedValues: HashSet<String>) { ... }

// Good: immutable collection type used instead
fun validateValue(actualValue: String, allowedValues: Set<String>) { ... }

// Bad: arrayListOf() returns ArrayList<T>, which is a mutable collection type
val allowedValues = arrayListOf("a", "b", "c")

// Good: listOf() returns List<T>
val allowedValues = listOf("a", "b", "c")

Prefer declaring functions with default parameter values to declaring overloaded functions.

// Bad
fun foo() = foo("a")
fun foo(a: String) { ... }

// Good
fun foo(a: String = "a") { ... }

If you have a functional type or a type with type parameters which is used multiple times in a codebase, prefer defining a type
alias for it:

typealias MouseClickHandler = (Any, MouseEvent) -> Unit
typealias PersonIndex = Map<String, Person>

In lambdas which are short and not nested, it's recommended to use the it convention instead of declaring the parameter
explicitly. In nested lambdas with parameters, parameters should be always declared explicitly.

Avoid using multiple labeled returns in a lambda. Consider restructuring the lambda so that it will have a single exit point. If that's
not possible or not clear enough, consider converting the lambda into an anonymous function.

Do not use a labeled return for the last statement in a lambda.

Use the named argument syntax when a method takes multiple parameters of the same primitive type, or for parameters of
Boolean type, unless the meaning of all parameters is absolutely clear from context.

drawSquare(x = 10, y = 10, width = 100, height = 100, fill = true)

Prefer using the expression form of try , if and when . Examples:

return if (x) foo() else bar()

return when(x) {
 0 -> "zero"
 else -> "nonzero"
}

Default parameter values

Type aliases

Lambda parameters

Returns in a lambda

Named arguments

Using conditional statements

46

The above is preferable to:

if (x)
 return foo()
else
 return bar()

when(x) {
 0 -> return "zero"
 else -> return "nonzero"
}

Prefer using if for binary conditions instead of when . Instead of

when (x) {
 null -> ...
 else -> ...
}

use if (x == null) ... else ...

Prefer using when if there are three or more options.

If you need to use a nullable Boolean in a conditional statement, use if (value == true) or if (value == false) checks.

Prefer using higher-order functions (filter , map etc.) to loops. Exception: forEach (prefer using a regular for loop instead,
unless the receiver of forEach is nullable or forEach is used as part of a longer call chain).

When making a choice between a complex expression using multiple higher-order functions and a loop, understand the cost of
the operations being performed in each case and keep performance considerations in mind.

Use the until function to loop over an open range:

for (i in 0..n - 1) { ... } // bad
for (i in 0 until n) { ... } // good

Prefer using string templates to string concatenation.

Prefer to use multiline strings instead of embedding \n escape sequences into regular string literals.

To maintain indentation in multiline strings, use trimIndent when the resulting string does not require any internal indentation,
or trimMargin when internal indentation is required:

assertEquals("""Foo
 Bar""".trimIndent(), value)

val a = """if(a > 1) {
 | return a
 |}""".trimMargin()

if versus when

Using nullable Boolean values in conditions

Using loops

Loops on ranges

Using strings

Functions vs Properties

47

In some cases functions with no arguments might be interchangeable with read-only properties. Although the semantics are
similar, there are some stylistic conventions on when to prefer one to another.

Prefer a property over a function when the underlying algorithm:

does not throw
is cheap to calculate (or caсhed on the first run)
returns the same result over invocations if the object state hasn't changed

Use extension functions liberally. Every time you have a function that works primarily on an object, consider making it an
extension function accepting that object as a receiver. To minimize API pollution, restrict the visibility of extension functions as
much as it makes sense. As necessary, use local extension functions, member extension functions, or top-level extension
functions with private visibility.

Declare a function as infix only when it works on two objects which play a similar role. Good examples: and , to , zip . Bad
example: add .

Don't declare a method as infix if it mutates the receiver object.

If you declare a factory function for a class, avoid giving it the same name as the class itself. Prefer using a distinct name making
it clear why the behavior of the factory function is special. Only if there is really no special semantics, you can use the same
name as the class.

Example:

class Point(val x: Double, val y: Double) {
 companion object {
 fun fromPolar(angle: Double, radius: Double) = Point(...)
 }
}

If you have an object with multiple overloaded constructors that don't call different superclass constructors and can't be
reduced to a single constructor with default argument values, prefer to replace the overloaded constructors with factory
functions.

A public function/method returning an expression of a platform type must declare its Kotlin type explicitly:

fun apiCall(): String = MyJavaApi.getProperty("name")

Any property (package-level or class-level) initialised with an expression of a platform type must declare its Kotlin type explicitly:

class Person {
 val name: String = MyJavaApi.getProperty("name")
}

A local value initialised with an expression of a platform type may or may not have a type declaration:

fun main(args: Array<String>) {
 val name = MyJavaApi.getProperty("name")
 println(name)
}

—
—
—

Using extension functions

Using in1x functions

Factory functions

Platform types

Using scope functions apply/with/run/also/let

48

Kotlin provides a variety of functions to execute a block of code in the context of a given object. To choose the correct function,
consider the following:

Are you calling methods on multiple objects in the block, or passing the instance of the context object as an argument? If
you are, use one of the functions that allows you to access the context object as it , not this (also or let). Use also
if the receiver is not used at all in the block.

// Context object is 'it'
class Baz {
 var currentBar: Bar?
 val observable: Observable

 val foo = createBar().also {
 currentBar = it // Accessing property of Baz
 observable.registerCallback(it) // Passing context object as argument
 }
}

// Receiver not used in the block
val foo = createBar().also {
 LOG.info("Bar created")
}

// Context object is 'this'
class Baz {
 val foo: Bar = createBar().apply {
 color = RED // Accessing only properties of Bar
 text = "Foo"
 }
}

What should the result of the call be? If the result needs to be the context object, use apply or also . If you need to return
a value from the block, use with , let or run

// Return value is context object
class Baz {
 val foo: Bar = createBar().apply {
 color = RED // Accessing only properties of Bar
 text = "Foo"
 }
}

// Return value is block result
class Baz {
 val foo: Bar = createNetworkConnection().let {
 loadBar()
 }
}

Is the context object nullable, or is it evaluated as a result of a call chain? If it is, use apply , let or run . Otherwise, use
with or also .

// Context object is nullable
person.email?.let { sendEmail(it) }

// Context object is non-null and accessible directly
with(person) {
 println("First name: $firstName, last name: $lastName")
}

—

—

—

Coding conventions for libraries

49

When writing libraries, it's recommended to follow an additional set of rules to ensure API stability:

Always explicitly specify member visibility (to avoid accidentally exposing declarations as public API)
Always explicitly specify function return types and property types (to avoid accidentally changing the return type when the
implementation changes)
Provide KDoc comments for all public members, with the exception of overrides that do not require any new documentation
(to support generating documentation for the library)

—
—

—

50

Basics

In Kotlin, everything is an object in the sense that we can call member functions and properties on any variable. Some of the
types can have a special internal representation - for example, numbers, characters and booleans can be represented as
primitive values at runtime - but to the user they look like ordinary classes. In this section we describe the basic types used in
Kotlin: numbers, characters, booleans, arrays, and strings.

Kotlin handles numbers in a way close to Java, but not exactly the same. For example, there are no implicit widening conversions
for numbers, and literals are slightly different in some cases.

Kotlin provides the following built-in types representing numbers (this is close to Java):

Type Bit width
Double 64
Float 32
Long 64
Int 32
Short 16
Byte 8

Note that characters are not numbers in Kotlin.

There are the following kinds of literal constants for integral values:

Decimals: 123

Longs are tagged by a capital L : 123L

Hexadecimals: 0x0F

Binaries: 0b00001011

NOTE: Octal literals are not supported.

Kotlin also supports a conventional notation for floating-point numbers:

Doubles by default: 123.5 , 123.5e10

Floats are tagged by f or F : 123.5f

You can use underscores to make number constants more readable:

val oneMillion = 1_000_000
val creditCardNumber = 1234_5678_9012_3456L
val socialSecurityNumber = 999_99_9999L
val hexBytes = 0xFF_EC_DE_5E
val bytes = 0b11010010_01101001_10010100_10010010

Basic Types

Numbers

Literal Constants

—

—

—

—

—

—

Underscores in numeric literals (since 1.1)

51

On the Java platform, numbers are physically stored as JVM primitive types, unless we need a nullable number reference (e.g.
Int?) or generics are involved. In the latter cases numbers are boxed.

Note that boxing of numbers does not necessarily preserve identity:

val a: Int = 10000
print(a === a) // Prints 'true'
val boxedA: Int? = a
val anotherBoxedA: Int? = a
print(boxedA === anotherBoxedA) // !!!Prints 'false'!!!

On the other hand, it preserves equality:

val a: Int = 10000
print(a == a) // Prints 'true'
val boxedA: Int? = a
val anotherBoxedA: Int? = a
print(boxedA == anotherBoxedA) // Prints 'true'

Due to different representations, smaller types are not subtypes of bigger ones. If they were, we would have troubles of the
following sort:

// Hypothetical code, does not actually compile:
val a: Int? = 1 // A boxed Int (java.lang.Integer)
val b: Long? = a // implicit conversion yields a boxed Long (java.lang.Long)
print(a == b) // Surprise! This prints "false" as Long's equals() check for other part to be Long as well

So not only identity, but even equality would have been lost silently all over the place.

As a consequence, smaller types are NOT implicitly converted to bigger types. This means that we cannot assign a value of type
Byte to an Int variable without an explicit conversion

val b: Byte = 1 // OK, literals are checked statically
val i: Int = b // ERROR

We can use explicit conversions to widen numbers

val i: Int = b.toInt() // OK: explicitly widened

Every number type supports the following conversions:

toByte(): Byte

toShort(): Short

toInt(): Int

toLong(): Long

toFloat(): Float

toDouble(): Double

toChar(): Char

Absence of implicit conversions is rarely noticeable because the type is inferred from the context, and arithmetical operations
are overloaded for appropriate conversions, for example

val l = 1L + 3 // Long + Int => Long

Representation

Explicit Conversions

—

—

—

—

—

—

—

52

Kotlin supports the standard set of arithmetical operations over numbers, which are declared as members of appropriate
classes (but the compiler optimizes the calls down to the corresponding instructions). See Operator overloading.

As of bitwise operations, there're no special characters for them, but just named functions that can be called in infix form, for
example:

val x = (1 shl 2) and 0x000FF000

Here is the complete list of bitwise operations (available for Int and Long only):

shl(bits) – signed shift left (Java's <<)

shr(bits) – signed shift right (Java's >>)

ushr(bits) – unsigned shift right (Java's >>>)

and(bits) – bitwise and

or(bits) – bitwise or

xor(bits) – bitwise xor

inv() – bitwise inversion

The operations on floating point numbers discussed in this section are:

Equality checks: a == b and a != b

Comparison operators: a < b , a > b , a <= b , a >= b

Range instantiation and range checks: a..b , x in a..b , x !in a..b

When the operands a and b are statically known to be Float or Double or their nullable counterparts (the type is declared or
inferred or is a result of a smart cast), the operations on the numbers and the range that they form follow the IEEE 754 Standard
for Floating-Point Arithmetic.

However, to support generic use cases and provide total ordering, when the operands are not statically typed as floating point
numbers (e.g. Any , Comparable<...> , a type parameter), the operations use the equals and compareTo implementations for
Float and Double , which disagree with the standard, so that:

NaN is considered equal to itself

NaN is considered greater than any other element including POSITIVE_INFINITY

-0.0 is considered less than 0.0

Characters are represented by the type Char . They can not be treated directly as numbers

fun check(c: Char) {
 if (c == 1) { // ERROR: incompatible types
 // ...
 }
}

Character literals go in single quotes: '1' . Special characters can be escaped using a backslash. The following escape
sequences are supported: \t , \b , \n , \r , \' , \" , \\ and \$. To encode any other character, use the Unicode escape
sequence syntax: '\uFF00' .

We can explicitly convert a character to an Int number:

Operations

—

—

—

—

—

—

—

Floating Point Numbers Comparison

—

—

—

—

—

—

Characters

53

fun decimalDigitValue(c: Char): Int {
 if (c !in '0'..'9')
 throw IllegalArgumentException("Out of range")
 return c.toInt() - '0'.toInt() // Explicit conversions to numbers
}

Like numbers, characters are boxed when a nullable reference is needed. Identity is not preserved by the boxing operation.

The type Boolean represents booleans, and has two values: true and false.

Booleans are boxed if a nullable reference is needed.

Built-in operations on booleans include

|| – lazy disjunction

&& – lazy conjunction

! - negation

Arrays in Kotlin are represented by the Array class, that has get and set functions (that turn into [] by operator overloading
conventions), and size property, along with a few other useful member functions:

class Array<T> private constructor() {
 val size: Int
 operator fun get(index: Int): T
 operator fun set(index: Int, value: T): Unit

 operator fun iterator(): Iterator<T>
 // ...
}

To create an array, we can use a library function arrayOf() and pass the item values to it, so that arrayOf(1, 2, 3) creates
an array [1, 2, 3]. Alternatively, the arrayOfNulls() library function can be used to create an array of a given size filled with null
elements.

Another option is to use the Array constructor that takes the array size and the function that can return the initial value of each
array element given its index:

// Creates an Array<String> with values ["0", "1", "4", "9", "16"]
val asc = Array(5, { i -> (i * i).toString() })

As we said above, the [] operation stands for calls to member functions get() and set() .

Note: unlike Java, arrays in Kotlin are invariant. This means that Kotlin does not let us assign an Array<String> to an
Array<Any> , which prevents a possible runtime failure (but you can use Array<out Any> , see Type Projections).

Kotlin also has specialized classes to represent arrays of primitive types without boxing overhead: ByteArray , ShortArray ,
IntArray and so on. These classes have no inheritance relation to the Array class, but they have the same set of methods
and properties. Each of them also has a corresponding factory function:

val x: IntArray = intArrayOf(1, 2, 3)
x[0] = x[1] + x[2]

Strings are represented by the type String . Strings are immutable. Elements of a string are characters that can be accessed
by the indexing operation: s[i] . A string can be iterated over with a for-loop:

Booleans

—

—

—

Arrays

Strings

54

for (c in str) {
 println(c)
}

You can concatenate strings using the + operator. This also works for concatenating strings with values of other types, as long
as the first element in the expression is a string:

val s = "abc" + 1
println(s + "def")

Note that in most cases using string templates or raw strings is preferable to string concatenation.

Kotlin has two types of string literals: escaped strings that may have escaped characters in them and raw strings that can
contain newlines and arbitrary text. An escaped string is very much like a Java string:

val s = "Hello, world!\n"

Escaping is done in the conventional way, with a backslash. See Characters above for the list of supported escape sequences.

A raw string is delimited by a triple quote ("""), contains no escaping and can contain newlines and any other characters:

val text = """
 for (c in "foo")
 print(c)
"""

You can remove leading whitespace with trimMargin() function:

val text = """
 |Tell me and I forget.
 |Teach me and I remember.
 |Involve me and I learn.
 |(Benjamin Franklin)
 """.trimMargin()

By default | is used as margin prefix, but you can choose another character and pass it as a parameter, like trimMargin(">") .

Strings may contain template expressions, i.e. pieces of code that are evaluated and whose results are concatenated into the
string. A template expression starts with a dollar sign ($) and consists of either a simple name:

val i = 10
println("i = $i") // prints "i = 10"

or an arbitrary expression in curly braces:

val s = "abc"
println("$s.length is ${s.length}") // prints "abc.length is 3"

Templates are supported both inside raw strings and inside escaped strings. If you need to represent a literal $ character in a
raw string (which doesn't support backslash escaping), you can use the following syntax:

val price = """
${'$'}9.99
"""

String Literals

String Templates

55

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/trim-margin.html

A source file may start with a package declaration:

package foo.bar

fun baz() {}

class Goo {}

// ...

All the contents (such as classes and functions) of the source file are contained by the package declared. So, in the example
above, the full name of baz() is foo.bar.baz , and the full name of Goo is foo.bar.Goo .

If the package is not specified, the contents of such a file belong to "default" package that has no name.

A number of packages are imported into every Kotlin file by default:

kotlin.*
kotlin.annotation.*
kotlin.collections.*
kotlin.comparisons.* (since 1.1)
kotlin.io.*
kotlin.ranges.*
kotlin.sequences.*
kotlin.text.*

Additional packages are imported depending on the target platform:

JVM:
java.lang.*
kotlin.jvm.*

JS:
kotlin.js.*

Apart from the default imports, each file may contain its own import directives. Syntax for imports is described in the grammar.

We can import either a single name, e.g.

import foo.Bar // Bar is now accessible without qualification

or all the accessible contents of a scope (package, class, object etc):

import foo.* // everything in 'foo' becomes accessible

If there is a name clash, we can disambiguate by using as keyword to locally rename the clashing entity:

import foo.Bar // Bar is accessible
import bar.Bar as bBar // bBar stands for 'bar.Bar'

The import keyword is not restricted to importing classes; you can also use it to import other declarations:

top-level functions and properties;

Packages

Default Imports

—
—
—
—
—
—
—
—

—
—
—

—
—

Imports

—

56

functions and properties declared in object declarations;
enum constants.

Unlike Java, Kotlin does not have a separate "import static" syntax; all of these declarations are imported using the regular
import keyword.

If a top-level declaration is marked private, it is private to the file it's declared in (see Visibility Modifiers).

—
—

Visibility of Top-level Declarations

57

https://docs.oracle.com/javase/8/docs/technotes/guides/language/static-import.html

In Kotlin, if is an expression, i.e. it returns a value. Therefore there is no ternary operator (condition ? then : else), because
ordinary if works fine in this role.

// Traditional usage
var max = a
if (a < b) max = b

// With else
var max: Int
if (a > b) {
 max = a
} else {
 max = b
}

// As expression
val max = if (a > b) a else b

if branches can be blocks, and the last expression is the value of a block:

val max = if (a > b) {
 print("Choose a")
 a
} else {
 print("Choose b")
 b
}

If you're using if as an expression rather than a statement (for example, returning its value or assigning it to a variable), the
expression is required to have an else branch.

See the grammar for if.

when replaces the switch operator of C-like languages. In the simplest form it looks like this

when (x) {
 1 -> print("x == 1")
 2 -> print("x == 2")
 else -> { // Note the block
 print("x is neither 1 nor 2")
 }
}

when matches its argument against all branches sequentially until some branch condition is satisfied. when can be used either as
an expression or as a statement. If it is used as an expression, the value of the satisfied branch becomes the value of the overall
expression. If it is used as a statement, the values of individual branches are ignored. (Just like with if, each branch can be a
block, and its value is the value of the last expression in the block.)

The else branch is evaluated if none of the other branch conditions are satisfied. If when is used as an expression, the else
branch is mandatory, unless the compiler can prove that all possible cases are covered with branch conditions.

If many cases should be handled in the same way, the branch conditions may be combined with a comma:

Control Flow: if, when, for, while

If Expression

When Expression

58

when (x) {
 0, 1 -> print("x == 0 or x == 1")
 else -> print("otherwise")
}

We can use arbitrary expressions (not only constants) as branch conditions

when (x) {
 parseInt(s) -> print("s encodes x")
 else -> print("s does not encode x")
}

We can also check a value for being in or !in a range or a collection:

when (x) {
 in 1..10 -> print("x is in the range")
 in validNumbers -> print("x is valid")
 !in 10..20 -> print("x is outside the range")
 else -> print("none of the above")
}

Another possibility is to check that a value is or !is of a particular type. Note that, due to smart casts, you can access the
methods and properties of the type without any extra checks.

fun hasPrefix(x: Any) = when(x) {
 is String -> x.startsWith("prefix")
 else -> false
}

when can also be used as a replacement for an if-else if chain. If no argument is supplied, the branch conditions are simply
boolean expressions, and a branch is executed when its condition is true:

when {
 x.isOdd() -> print("x is odd")
 x.isEven() -> print("x is even")
 else -> print("x is funny")
}

See the grammar for when.

for loop iterates through anything that provides an iterator. This is equivalent to the foreach loop in languages like C#. The
syntax is as follows:

for (item in collection) print(item)

The body can be a block.

for (item: Int in ints) {
 // ...
}

As mentioned before, for iterates through anything that provides an iterator, i.e.

has a member- or extension-function iterator() , whose return type

has a member- or extension-function next() , and

has a member- or extension-function hasNext() that returns Boolean .

For Loops

—

—

—

59

All of these three functions need to be marked as operator .

To iterate over a range of numbers, use a range expression:

for (i in 1..3) {
 println(i)
}
for (i in 6 downTo 0 step 2) {
 println(i)
}

A for loop over a range or an array is compiled to an index-based loop that does not create an iterator object.

If you want to iterate through an array or a list with an index, you can do it this way:

for (i in array.indices) {
 println(array[i])
}

Alternatively, you can use the withIndex library function:

for ((index, value) in array.withIndex()) {
 println("the element at $index is $value")
}

See the grammar for for.

while and do..while work as usual

while (x > 0) {
 x--
}

do {
 val y = retrieveData()
} while (y != null) // y is visible here!

See the grammar for while.

Kotlin supports traditional break and continue operators in loops. See Returns and jumps.

While Loops

Break and continue in loops

60

Kotlin has three structural jump expressions:

return. By default returns from the nearest enclosing function or anonymous function.

break. Terminates the nearest enclosing loop.

continue. Proceeds to the next step of the nearest enclosing loop.

All of these expressions can be used as part of larger expressions:

val s = person.name ?: return

The type of these expressions is the Nothing type.

Any expression in Kotlin may be marked with a label. Labels have the form of an identifier followed by the @ sign, for example:
abc@ , fooBar@ are valid labels (see the grammar). To label an expression, we just put a label in front of it

loop@ for (i in 1..100) {
 // ...
}

Now, we can qualify a break or a continue with a label:

loop@ for (i in 1..100) {
 for (j in 1..100) {
 if (...) break@loop
 }
}

A break qualified with a label jumps to the execution point right after the loop marked with that label. A continue proceeds to
the next iteration of that loop.

With function literals, local functions and object expression, functions can be nested in Kotlin. Qualified returns allow us to
return from an outer function. The most important use case is returning from a lambda expression. Recall that when we write
this:

fun foo() {
 listOf(1, 2, 3, 4, 5).forEach {
 if (it == 3) return // non-local return directly to the caller of foo()
 print(it)
 }
 println("this point is unreachable")
}

The return-expression returns from the nearest enclosing function, i.e. foo . (Note that such non-local returns are supported
only for lambda expressions passed to inline functions.) If we need to return from a lambda expression, we have to label it and
qualify the return:

fun foo() {
 listOf(1, 2, 3, 4, 5).forEach lit@{
 if (it == 3) return@lit // local return to the caller of the lambda, i.e. the forEach loop
 print(it)
 }
 print(" done with explicit label")
}

Returns and Jumps

—

—

—

Break and Continue Labels

Return at Labels

61

Now, it returns only from the lambda expression. Oftentimes it is more convenient to use implicit labels: such a label has the
same name as the function to which the lambda is passed.

fun foo() {
 listOf(1, 2, 3, 4, 5).forEach {
 if (it == 3) return@forEach // local return to the caller of the lambda, i.e. the forEach loop
 print(it)
 }
 print(" done with implicit label")
}

Alternatively, we can replace the lambda expression with an anonymous function. A return statement in an anonymous function
will return from the anonymous function itself.

fun foo() {
 listOf(1, 2, 3, 4, 5).forEach(fun(value: Int) {
 if (value == 3) return // local return to the caller of the anonymous fun, i.e. the forEach loop
 print(value)
 })
 print(" done with anonymous function")
}

Note that the use of local returns in previous three examples is similar to the use of continue in regular loops. There is no direct
equivalent for break, but it can be simulated by adding another nesting lambda and non-locally returning from it:

fun foo() {
 run loop@{
 listOf(1, 2, 3, 4, 5).forEach {
 if (it == 3) return@loop // non-local return from the lambda passed to run
 print(it)
 }
 }
 print(" done with nested loop")
}

When returning a value, the parser gives preference to the qualified return, i.e.

return@a 1

means "return 1 at label @a " and not "return a labeled expression (@a 1) ".

62

Classes and Objects

Classes in Kotlin are declared using the keyword class:

class Invoice {
}

The class declaration consists of the class name, the class header (specifying its type parameters, the primary constructor etc.)
and the class body, surrounded by curly braces. Both the header and the body are optional; if the class has no body, curly
braces can be omitted.

class Empty

A class in Kotlin can have a primary constructor and one or more secondary constructors. The primary constructor is part
of the class header: it goes after the class name (and optional type parameters).

class Person constructor(firstName: String) {
}

If the primary constructor does not have any annotations or visibility modifiers, the constructor keyword can be omitted:

class Person(firstName: String) {
}

The primary constructor cannot contain any code. Initialization code can be placed in initializer blocks, which are prefixed with
the init keyword.

During an instance initialization, the initializer blocks are executed in the same order as they appear in the class body,
interleaved with the property initializers:

class InitOrderDemo(name: String) {
 val firstProperty = "First property: $name".also(::println)

 init {
 println("First initializer block that prints ${name}")
 }

 val secondProperty = "Second property: ${name.length}".also(::println)

 init {
 println("Second initializer block that prints ${name.length}")
 }
}

Note that parameters of the primary constructor can be used in the initializer blocks. They can also be used in property
initializers declared in the class body:

Classes and Inheritance

Classes

Constructors

63

class Customer(name: String) {
 val customerKey = name.toUpperCase()
}

In fact, for declaring properties and initializing them from the primary constructor, Kotlin has a concise syntax:

class Person(val firstName: String, val lastName: String, var age: Int) {
 // ...
}

Much the same way as regular properties, the properties declared in the primary constructor can be mutable (var) or read-only
(val).

If the constructor has annotations or visibility modifiers, the constructor keyword is required, and the modifiers go before it:

class Customer public @Inject constructor(name: String) { ... }

For more details, see Visibility Modifiers.

The class can also declare secondary constructors, which are prefixed with constructor:

class Person {
 constructor(parent: Person) {
 parent.children.add(this)
 }
}

If the class has a primary constructor, each secondary constructor needs to delegate to the primary constructor, either directly
or indirectly through another secondary constructor(s). Delegation to another constructor of the same class is done using the
this keyword:

class Person(val name: String) {
 constructor(name: String, parent: Person) : this(name) {
 parent.children.add(this)
 }
}

Note that code in initializer blocks effectively becomes part of the primary constructor. Delegation to the primary constructor
happens as the first statement of a secondary constructor, so the code in all initializer blocks is executed before the secondary
constructor body. Even if the class has no primary constructor, the delegation still happens implicitly, and the initializer blocks
are still executed:

class Constructors {
 init {
 println("Init block")
 }

 constructor(i: Int) {
 println("Constructor")
 }
}

If a non-abstract class does not declare any constructors (primary or secondary), it will have a generated primary constructor
with no arguments. The visibility of the constructor will be public. If you do not want your class to have a public constructor, you
need to declare an empty primary constructor with non-default visibility:

Secondary Constructors

64

class DontCreateMe private constructor () {
}

NOTE: On the JVM, if all of the parameters of the primary constructor have default values, the compiler will generate an
additional parameterless constructor which will use the default values. This makes it easier to use Kotlin with libraries such
as Jackson or JPA that create class instances through parameterless constructors.

class Customer(val customerName: String = "")

To create an instance of a class, we call the constructor as if it were a regular function:

val invoice = Invoice()

val customer = Customer("Joe Smith")

Note that Kotlin does not have a new keyword.

Creating instances of nested, inner and anonymous inner classes is described in Nested classes.

Classes can contain:

Constructors and initializer blocks
Functions
Properties
Nested and Inner Classes
Object Declarations

All classes in Kotlin have a common superclass Any , that is the default superclass for a class with no supertypes declared:

class Example // Implicitly inherits from Any

Note: Any is not java.lang.Object; in particular, it does not have any members other than equals(), hashCode() and
toString(). Please consult the Java interoperability section for more details.

To declare an explicit supertype, we place the type after a colon in the class header:

open class Base(p: Int)

class Derived(p: Int) : Base(p)

The open annotation on a class is the opposite of Java's final: it allows others to inherit from this class. By default, all
classes in Kotlin are final, which corresponds to Effective Java, 3rd Edition, Item 19: Design and document for inheritance or
else prohibit it.

If the derived class has a primary constructor, the base class can (and must) be initialized right there, using the parameters of
the primary constructor.

If the class has no primary constructor, then each secondary constructor has to initialize the base type using the super
keyword, or to delegate to another constructor which does that. Note that in this case different secondary constructors can call
different constructors of the base type:

Creating instances of classes

Class Members

—
—
—
—
—

Inheritance

65

http://www.oracle.com/technetwork/java/effectivejava-136174.html

class MyView : View {
 constructor(ctx: Context) : super(ctx)

 constructor(ctx: Context, attrs: AttributeSet) : super(ctx, attrs)
}

As we mentioned before, we stick to making things explicit in Kotlin. And unlike Java, Kotlin requires explicit annotations for
overridable members (we call them open) and for overrides:

open class Base {
 open fun v() {}
 fun nv() {}
}
class Derived() : Base() {
 override fun v() {}
}

The override annotation is required for Derived.v() . If it were missing, the compiler would complain. If there is no open
annotation on a function, like Base.nv() , declaring a method with the same signature in a subclass is illegal, either with
override or without it. In a final class (e.g. a class with no open annotation), open members are prohibited.

A member marked override is itself open, i.e. it may be overridden in subclasses. If you want to prohibit re-overriding, use
final:

open class AnotherDerived() : Base() {
 final override fun v() {}
}

Overriding properties works in a similar way to overriding methods; properties declared on a superclass that are then redeclared
on a derived class must be prefaced with override, and they must have a compatible type. Each declared property can be
overridden by a property with an initializer or by a property with a getter method.

open class Foo {
 open val x: Int get() { ... }
}

class Bar1 : Foo() {
 override val x: Int = ...
}

You can also override a val property with a var property, but not vice versa. This is allowed because a val property
essentially declares a getter method, and overriding it as a var additionally declares a setter method in the derived class.

Note that you can use the override keyword as part of the property declaration in a primary constructor.

interface Foo {
 val count: Int
}

class Bar1(override val count: Int) : Foo

class Bar2 : Foo {
 override var count: Int = 0
}

Overriding Methods

Overriding Properties

Derived class initialization order

66

During construction of a new instance of a derived class, the base class initialization is done as the first step (preceded only by
evaluation of the arguments for the base class constructor) and thus happens before the initialization logic of the derived class
is run.

open class Base(val name: String) {

 init { println("Initializing Base") }

 open val size: Int =
 name.length.also { println("Initializing size in Base: $it") }
}

class Derived(
 name: String,
 val lastName: String
) : Base(name.capitalize().also { println("Argument for Base: $it") }) {

 init { println("Initializing Derived") }

 override val size: Int =
 (super.size + lastName.length).also { println("Initializing size in Derived: $it") }
}

It means that, by the time of the base class constructor execution, the properties declared or overridden in the derived class are
not yet initialized. If any of those properties are used in the base class initialization logic (either directly or indirectly, through
another overridden open member implementation), it may lead to incorrect behavior or a runtime failure. Designing a base class,
you should therefore avoid using open members in the constructors, property initializers, and init blocks.

Code in a derived class can call its superclass functions and property accessors implementations using the super keyword:

open class Foo {
 open fun f() { println("Foo.f()") }
 open val x: Int get() = 1
}

class Bar : Foo() {
 override fun f() {
 super.f()
 println("Bar.f()")
 }

 override val x: Int get() = super.x + 1
}

Inside an inner class, accessing the superclass of the outer class is done with the super keyword qualified with the outer class
name: super@Outer :

class Bar : Foo() {
 override fun f() { /* ... */ }
 override val x: Int get() = 0

 inner class Baz {
 fun g() {
 super@Bar.f() // Calls Foo's implementation of f()
 println(super@Bar.x) // Uses Foo's implementation of x's getter
 }
 }
}

Calling the superclass implementation

Overriding Rules

67

In Kotlin, implementation inheritance is regulated by the following rule: if a class inherits many implementations of the same
member from its immediate superclasses, it must override this member and provide its own implementation (perhaps, using
one of the inherited ones). To denote the supertype from which the inherited implementation is taken, we use super qualified
by the supertype name in angle brackets, e.g. super<Base> :

open class A {
 open fun f() { print("A") }
 fun a() { print("a") }
}

interface B {
 fun f() { print("B") } // interface members are 'open' by default
 fun b() { print("b") }
}

class C() : A(), B {
 // The compiler requires f() to be overridden:
 override fun f() {
 super<A>.f() // call to A.f()
 super.f() // call to B.f()
 }
}

It's fine to inherit from both A and B , and we have no problems with a() and b() since C inherits only one implementation
of each of these functions. But for f() we have two implementations inherited by C , and thus we have to override f() in C
and provide our own implementation that eliminates the ambiguity.

A class and some of its members may be declared abstract. An abstract member does not have an implementation in its class.
Note that we do not need to annotate an abstract class or function with open – it goes without saying.

We can override a non-abstract open member with an abstract one

open class Base {
 open fun f() {}
}

abstract class Derived : Base() {
 override abstract fun f()
}

In Kotlin, unlike Java or C#, classes do not have static methods. In most cases, it's recommended to simply use package-level
functions instead.

If you need to write a function that can be called without having a class instance but needs access to the internals of a class (for
example, a factory method), you can write it as a member of an object declaration inside that class.

Even more specifically, if you declare a companion object inside your class, you'll be able to call its members with the same
syntax as calling static methods in Java/C#, using only the class name as a qualifier.

Abstract Classes

Companion Objects

68

Classes in Kotlin can have properties. These can be declared as mutable, using the var keyword or read-only using the val
keyword.

class Address {
 var name: String = ...
 var street: String = ...
 var city: String = ...
 var state: String? = ...
 var zip: String = ...
}

To use a property, we simply refer to it by name, as if it were a field in Java:

fun copyAddress(address: Address): Address {
 val result = Address() // there's no 'new' keyword in Kotlin
 result.name = address.name // accessors are called
 result.street = address.street
 // ...
 return result
}

The full syntax for declaring a property is

var <propertyName>[: <PropertyType>] [= <property_initializer>]
 [<getter>]
 [<setter>]

The initializer, getter and setter are optional. Property type is optional if it can be inferred from the initializer (or from the getter
return type, as shown below).

Examples:

var allByDefault: Int? // error: explicit initializer required, default getter and setter implied
var initialized = 1 // has type Int, default getter and setter

The full syntax of a read-only property declaration differs from a mutable one in two ways: it starts with val instead of var and
does not allow a setter:

val simple: Int? // has type Int, default getter, must be initialized in constructor
val inferredType = 1 // has type Int and a default getter

We can write custom accessors, very much like ordinary functions, right inside a property declaration. Here's an example of a
custom getter:

val isEmpty: Boolean
 get() = this.size == 0

A custom setter looks like this:

Properties and Fields

Declaring Properties

Getters and Setters

69

var stringRepresentation: String
 get() = this.toString()
 set(value) {
 setDataFromString(value) // parses the string and assigns values to other properties
 }

By convention, the name of the setter parameter is value , but you can choose a different name if you prefer.

Since Kotlin 1.1, you can omit the property type if it can be inferred from the getter:

val isEmpty get() = this.size == 0 // has type Boolean

If you need to change the visibility of an accessor or to annotate it, but don't need to change the default implementation, you
can define the accessor without defining its body:

var setterVisibility: String = "abc"
 private set // the setter is private and has the default implementation

var setterWithAnnotation: Any? = null
 @Inject set // annotate the setter with Inject

Fields cannot be declared directly in Kotlin classes. However, when a property needs a backing field, Kotlin provides it
automatically. This backing field can be referenced in the accessors using the field identifier:

var counter = 0 // Note: the initializer assigns the backing field directly
 set(value) {
 if (value >= 0) field = value
 }

The field identifier can only be used in the accessors of the property.

A backing field will be generated for a property if it uses the default implementation of at least one of the accessors, or if a
custom accessor references it through the field identifier.

For example, in the following case there will be no backing field:

val isEmpty: Boolean
 get() = this.size == 0

If you want to do something that does not fit into this "implicit backing field" scheme, you can always fall back to having a
backing property:

private var _table: Map<String, Int>? = null
public val table: Map<String, Int>
 get() {
 if (_table == null) {
 _table = HashMap() // Type parameters are inferred
 }
 return _table ?: throw AssertionError("Set to null by another thread")
 }

In all respects, this is just the same as in Java since access to private properties with default getters and setters is optimized so
that no function call overhead is introduced.

Backing Fields

Backing Properties

Compile-Time Constants

70

Properties the value of which is known at compile time can be marked as compile time constants using the const modifier.
Such properties need to fulfil the following requirements:

Top-level or member of an object

Initialized with a value of type String or a primitive type

No custom getter

Such properties can be used in annotations:

const val SUBSYSTEM_DEPRECATED: String = "This subsystem is deprecated"

@Deprecated(SUBSYSTEM_DEPRECATED) fun foo() { ... }

Normally, properties declared as having a non-null type must be initialized in the constructor. However, fairly often this is not
convenient. For example, properties can be initialized through dependency injection, or in the setup method of a unit test. In
this case, you cannot supply a non-null initializer in the constructor, but you still want to avoid null checks when referencing the
property inside the body of a class.

To handle this case, you can mark the property with the lateinit modifier:

public class MyTest {
 lateinit var subject: TestSubject

 @SetUp fun setup() {
 subject = TestSubject()
 }

 @Test fun test() {
 subject.method() // dereference directly
 }
}

The modifier can be used on var properties declared inside the body of a class (not in the primary constructor, and only when
the property does not have a custom getter or setter) and, since Kotlin 1.2, for top-level properties and local variables. The type
of the property or variable must be non-null, and it must not be a primitive type.

Accessing a lateinit property before it has been initialized throws a special exception that clearly identifies the property
being accessed and the fact that it hasn't been initialized.

To check whether a lateinit var has already been initialized, use .isInitialized on the reference to that property:

if (foo::bar.isInitialized) {
 println(foo.bar)
}

This check is only available for the properties that are lexically accessible, i.e. declared in the same type or in one of the outer
types, or at top level in the same file.

See Overriding Properties

—

—

—

Late-Initialized Properties and Variables

Checking whether a lateinit var is initialized (since 1.2)

Overriding Properties

Delegated Properties

71

The most common kind of properties simply reads from (and maybe writes to) a backing field. On the other hand, with custom
getters and setters one can implement any behaviour of a property. Somewhere in between, there are certain common patterns
of how a property may work. A few examples: lazy values, reading from a map by a given key, accessing a database, notifying
listener on access, etc.

Such common behaviours can be implemented as libraries using delegated properties.

72

Interfaces in Kotlin are very similar to Java 8. They can contain declarations of abstract methods, as well as method
implementations. What makes them different from abstract classes is that interfaces cannot store state. They can have
properties but these need to be abstract or to provide accessor implementations.

An interface is defined using the keyword interface

interface MyInterface {
 fun bar()
 fun foo() {
 // optional body
 }
}

A class or object can implement one or more interfaces

class Child : MyInterface {
 override fun bar() {
 // body
 }
}

You can declare properties in interfaces. A property declared in an interface can either be abstract, or it can provide
implementations for accessors. Properties declared in interfaces can't have backing fields, and therefore accessors declared in
interfaces can't reference them.

interface MyInterface {
 val prop: Int // abstract

 val propertyWithImplementation: String
 get() = "foo"

 fun foo() {
 print(prop)
 }
}

class Child : MyInterface {
 override val prop: Int = 29
}

When we declare many types in our supertype list, it may appear that we inherit more than one implementation of the same
method. For example

Interfaces

Implementing Interfaces

Properties in Interfaces

Resolving overriding con<icts

73

interface A {
 fun foo() { print("A") }
 fun bar()
}

interface B {
 fun foo() { print("B") }
 fun bar() { print("bar") }
}

class C : A {
 override fun bar() { print("bar") }
}

class D : A, B {
 override fun foo() {
 super<A>.foo()
 super.foo()
 }

 override fun bar() {
 super.bar()
 }
}

Interfaces A and B both declare functions foo() and bar(). Both of them implement foo(), but only B implements bar() (bar() is not
marked abstract in A, because this is the default for interfaces, if the function has no body). Now, if we derive a concrete class C
from A, we, obviously, have to override bar() and provide an implementation.

However, if we derive D from A and B, we need to implement all the methods which we have inherited from multiple interfaces,
and to specify how exactly D should implement them. This rule applies both to methods for which we've inherited a single
implementation (bar()) and multiple implementations (foo()).

74

Classes, objects, interfaces, constructors, functions, properties and their setters can have visibility modifiers. (Getters always
have the same visibility as the property.) There are four visibility modifiers in Kotlin: private , protected , internal and
public . The default visibility, used if there is no explicit modifier, is public .

Below please find explanations of how the modifiers apply to different types of declaring scopes.

Functions, properties and classes, objects and interfaces can be declared on the "top-level", i.e. directly inside a package:

// file name: example.kt
package foo

fun baz() {}
class Bar {}

If you do not specify any visibility modifier, public is used by default, which means that your declarations will be visible
everywhere;
If you mark a declaration private , it will only be visible inside the file containing the declaration;

If you mark it internal , it is visible everywhere in the same module;

protected is not available for top-level declarations.

Note: to use a visible top-level declaration from another package, you should still import it.

Examples:

// file name: example.kt
package foo

private fun foo() {} // visible inside example.kt

public var bar: Int = 5 // property is visible everywhere
 private set // setter is visible only in example.kt

internal val baz = 6 // visible inside the same module

For members declared inside a class:

private means visible inside this class only (including all its members);

protected — same as private + visible in subclasses too;

internal — any client inside this module who sees the declaring class sees its internal members;

public — any client who sees the declaring class sees its public members.

NOTE for Java users: outer class does not see private members of its inner classes in Kotlin.

If you override a protected member and do not specify the visibility explicitly, the overriding member will also have protected
visibility.

Examples:

Visibility Modi5ers

Packages

—

—

—

—

Classes and Interfaces

—

—

—

—

75

open class Outer {
 private val a = 1
 protected open val b = 2
 internal val c = 3
 val d = 4 // public by default

 protected class Nested {
 public val e: Int = 5
 }
}

class Subclass : Outer() {
 // a is not visible
 // b, c and d are visible
 // Nested and e are visible

 override val b = 5 // 'b' is protected
}

class Unrelated(o: Outer) {
 // o.a, o.b are not visible
 // o.c and o.d are visible (same module)
 // Outer.Nested is not visible, and Nested::e is not visible either
}

To specify a visibility of the primary constructor of a class, use the following syntax (note that you need to add an explicit
constructor keyword):

class C private constructor(a: Int) { ... }

Here the constructor is private. By default, all constructors are public , which effectively amounts to them being visible
everywhere where the class is visible (i.e. a constructor of an internal class is only visible within the same module).

Local variables, functions and classes can not have visibility modifiers.

The internal visibility modifier means that the member is visible within the same module. More specifically, a module is a set
of Kotlin files compiled together:

an IntelliJ IDEA module;
a Maven project;
a Gradle source set (with the exception that the test source set can access the internal declarations of main);

a set of files compiled with one invocation of the Ant task.

Constructors

Local declarations

Modules

—
—
—

—

76

Kotlin, similar to C# and Gosu, provides the ability to extend a class with new functionality without having to inherit from the class
or use any type of design pattern such as Decorator. This is done via special declarations called extensions. Kotlin supports
extension functions and extension properties.

To declare an extension function, we need to prefix its name with a receiver type, i.e. the type being extended. The following
adds a swap function to MutableList<Int> :

fun MutableList<Int>.swap(index1: Int, index2: Int) {
 val tmp = this[index1] // 'this' corresponds to the list
 this[index1] = this[index2]
 this[index2] = tmp
}

The this keyword inside an extension function corresponds to the receiver object (the one that is passed before the dot). Now,
we can call such a function on any MutableList<Int> :

val l = mutableListOf(1, 2, 3)
l.swap(0, 2) // 'this' inside 'swap()' will hold the value of 'l'

Of course, this function makes sense for any MutableList<T> , and we can make it generic:

fun <T> MutableList<T>.swap(index1: Int, index2: Int) {
 val tmp = this[index1] // 'this' corresponds to the list
 this[index1] = this[index2]
 this[index2] = tmp
}

We declare the generic type parameter before the function name for it to be available in the receiver type expression. See
Generic functions.

Extensions do not actually modify classes they extend. By defining an extension, you do not insert new members into a class,
but merely make new functions callable with the dot-notation on variables of this type.

We would like to emphasize that extension functions are dispatched statically, i.e. they are not virtual by receiver type. This
means that the extension function being called is determined by the type of the expression on which the function is invoked,
not by the type of the result of evaluating that expression at runtime. For example:

open class C

class D: C()

fun C.foo() = "c"

fun D.foo() = "d"

fun printFoo(c: C) {
 println(c.foo())
}

printFoo(D())

This example will print "c", because the extension function being called depends only on the declared type of the parameter c ,
which is the C class.

Extensions

Extension Functions

Extensions are resolved statically

77

If a class has a member function, and an extension function is defined which has the same receiver type, the same name and is
applicable to given arguments, the member always wins. For example:

class C {
 fun foo() { println("member") }
}

fun C.foo() { println("extension") }

If we call c.foo() of any c of type C , it will print "member", not "extension".

However, it's perfectly OK for extension functions to overload member functions which have the same name but a different
signature:

class C {
 fun foo() { println("member") }
}

fun C.foo(i: Int) { println("extension") }

The call to C().foo(1) will print "extension".

Note that extensions can be defined with a nullable receiver type. Such extensions can be called on an object variable even if its
value is null, and can check for this == null inside the body. This is what allows you to call toString() in Kotlin without checking
for null: the check happens inside the extension function.

fun Any?.toString(): String {
 if (this == null) return "null"
 // after the null check, 'this' is autocast to a non-null type, so the toString() below
 // resolves to the member function of the Any class
 return toString()
}

Similarly to functions, Kotlin supports extension properties:

val <T> List<T>.lastIndex: Int
 get() = size - 1

Note that, since extensions do not actually insert members into classes, there's no efficient way for an extension property to
have a backing field. This is why initializers are not allowed for extension properties. Their behavior can only be defined
by explicitly providing getters/setters.

Example:

val Foo.bar = 1 // error: initializers are not allowed for extension properties

If a class has a companion object defined, you can also define extension functions and properties for the companion object:

Nullable Receiver

Extension Properties

Companion Object Extensions

78

class MyClass {
 companion object { } // will be called "Companion"
}

fun MyClass.Companion.foo() {
 // ...
}

Just like regular members of the companion object, they can be called using only the class name as the qualifier:

MyClass.foo()

Most of the time we define extensions on the top level, i.e. directly under packages:

package foo.bar

fun Baz.goo() { ... }

To use such an extension outside its declaring package, we need to import it at the call site:

package com.example.usage

import foo.bar.goo // importing all extensions by name "goo"
 // or
import foo.bar.* // importing everything from "foo.bar"

fun usage(baz: Baz) {
 baz.goo()
}

See Imports for more information.

Inside a class, you can declare extensions for another class. Inside such an extension, there are multiple implicit receivers -
objects members of which can be accessed without a qualifier. The instance of the class in which the extension is declared is
called dispatch receiver, and the instance of the receiver type of the extension method is called extension receiver.

class D {
 fun bar() { ... }
}

class C {
 fun baz() { ... }

 fun D.foo() {
 bar() // calls D.bar
 baz() // calls C.baz
 }

 fun caller(d: D) {
 d.foo() // call the extension function
 }
}

In case of a name conflict between the members of the dispatch receiver and the extension receiver, the extension receiver
takes precedence. To refer to the member of the dispatch receiver you can use the qualified this syntax.

Scope of Extensions

Declaring Extensions as Members

79

class C {
 fun D.foo() {
 toString() // calls D.toString()
 this@C.toString() // calls C.toString()
 }

Extensions declared as members can be declared as open and overridden in subclasses. This means that the dispatch of such
functions is virtual with regard to the dispatch receiver type, but static with regard to the extension receiver type.

open class D {
}

class D1 : D() {
}

open class C {
 open fun D.foo() {
 println("D.foo in C")
 }

 open fun D1.foo() {
 println("D1.foo in C")
 }

 fun caller(d: D) {
 d.foo() // call the extension function
 }
}

class C1 : C() {
 override fun D.foo() {
 println("D.foo in C1")
 }

 override fun D1.foo() {
 println("D1.foo in C1")
 }
}

C().caller(D()) // prints "D.foo in C"
C1().caller(D()) // prints "D.foo in C1" - dispatch receiver is resolved virtually
C().caller(D1()) // prints "D.foo in C" - extension receiver is resolved statically

In Java, we are used to classes named "*Utils": FileUtils , StringUtils and so on. The famous java.util.Collections
belongs to the same breed. And the unpleasant part about these Utils-classes is that the code that uses them looks like this:

// Java
Collections.swap(list, Collections.binarySearch(list, Collections.max(otherList)),
Collections.max(list));

Those class names are always getting in the way. We can use static imports and get this:

// Java
swap(list, binarySearch(list, max(otherList)), max(list));

This is a little better, but we have no or little help from the powerful code completion of the IDE. It would be so much better if we
could say:

Motivation

80

// Java
list.swap(list.binarySearch(otherList.max()), list.max());

But we don't want to implement all the possible methods inside the class List , right? This is where extensions help us.

81

We frequently create classes whose main purpose is to hold data. In such a class some standard functionality and utility
functions are often mechanically derivable from the data. In Kotlin, this is called a data class and is marked as data :

data class User(val name: String, val age: Int)

The compiler automatically derives the following members from all properties declared in the primary constructor:

equals() / hashCode() pair;

toString() of the form "User(name=John, age=42)" ;

componentN() functions corresponding to the properties in their order of declaration;

copy() function (see below).

To ensure consistency and meaningful behavior of the generated code, data classes have to fulfill the following requirements:

The primary constructor needs to have at least one parameter;
All primary constructor parameters need to be marked as val or var ;

Data classes cannot be abstract, open, sealed or inner;
(before 1.1) Data classes may only implement interfaces.

Additionally, the members generation follows these rules with regard to the members inheritance:

If there are explicit implementations of equals() , hashCode() or toString() in the data class body or final
implementations in a superclass, then these functions are not generated, and the existing implementations are used;
If a supertype has the componentN() functions that are open and return compatible types, the corresponding functions are
generated for the data class and override those of the supertype. If the functions of the supertype cannot be overridden
due to incompatible signatures or being final, an error is reported;
Deriving a data class from a type that already has a copy(...) function with a matching signature is deprecated in Kotlin 1.2
and will be prohibited in Kotlin 1.3.
Providing explicit implementations for the componentN() and copy() functions is not allowed.

Since 1.1, data classes may extend other classes (see Sealed classes for examples).

On the JVM, if the generated class needs to have a parameterless constructor, default values for all properties have to be
specified (see Constructors).

data class User(val name: String = "", val age: Int = 0)

Note that the compiler only uses the properties defined inside the primary constructor for the automatically generated
functions. To exclude a property from the generated implementations, declare it inside the class body:

data class Person(val name: String) {
 var age: Int = 0
}

Only the property name will be used inside the toString() , equals() , hashCode() , and copy() implementations, and there
will only be one component function component1() . While two Person objects can have different ages, they will be treated as
equal.

 val person1 = Person("John")
 val person2 = Person("John")

 person1.age = 10
 person2.age = 20

Data Classes

—

—

—

—

—
—

—
—

—

—

—

—

Properties Declared in the Class Body

82

It's often the case that we need to copy an object altering some of its properties, but keeping the rest unchanged. This is what
copy() function is generated for. For the User class above, its implementation would be as follows:

fun copy(name: String = this.name, age: Int = this.age) = User(name, age)

This allows us to write:

val jack = User(name = "Jack", age = 1)
val olderJack = jack.copy(age = 2)

Component functions generated for data classes enable their use in destructuring declarations:

val jane = User("Jane", 35)
val (name, age) = jane
println("$name, $age years of age") // prints "Jane, 35 years of age"

The standard library provides Pair and Triple . In most cases, though, named data classes are a better design choice,
because they make the code more readable by providing meaningful names for properties.

Copying

Data Classes and Destructuring Declarations

Standard Data Classes

83

Sealed classes are used for representing restricted class hierarchies, when a value can have one of the types from a limited set,
but cannot have any other type. They are, in a sense, an extension of enum classes: the set of values for an enum type is also
restricted, but each enum constant exists only as a single instance, whereas a subclass of a sealed class can have multiple
instances which can contain state.

To declare a sealed class, you put the sealed modifier before the name of the class. A sealed class can have subclasses, but
all of them must be declared in the same file as the sealed class itself. (Before Kotlin 1.1, the rules were even more strict:
classes had to be nested inside the declaration of the sealed class).

sealed class Expr
data class Const(val number: Double) : Expr()
data class Sum(val e1: Expr, val e2: Expr) : Expr()
object NotANumber : Expr()

(The example above uses one additional new feature of Kotlin 1.1: the possibility for data classes to extend other classes,
including sealed classes.)

A sealed class is abstract by itself, it cannot be instantiated directly and can have abstract members.

Sealed classes are not allowed to have non-private constructors (their constructors are private by default).

Note that classes which extend subclasses of a sealed class (indirect inheritors) can be placed anywhere, not necessarily in the
same file.

The key benefit of using sealed classes comes into play when you use them in a when expression. If it's possible to verify that
the statement covers all cases, you don't need to add an else clause to the statement. However, this works only if you use
when as an expression (using the result) and not as a statement.

fun eval(expr: Expr): Double = when(expr) {
 is Const -> expr.number
 is Sum -> eval(expr.e1) + eval(expr.e2)
 NotANumber -> Double.NaN
 // the `else` clause is not required because we've covered all the cases
}

Sealed Classes

84

As in Java, classes in Kotlin may have type parameters:

class Box<T>(t: T) {
 var value = t
}

In general, to create an instance of such a class, we need to provide the type arguments:

val box: Box<Int> = Box<Int>(1)

But if the parameters may be inferred, e.g. from the constructor arguments or by some other means, one is allowed to omit the
type arguments:

val box = Box(1) // 1 has type Int, so the compiler figures out that we are talking about Box<Int>

One of the most tricky parts of Java's type system is wildcard types (see Java Generics FAQ). And Kotlin doesn't have any. Instead,
it has two other things: declaration-site variance and type projections.

First, let's think about why Java needs those mysterious wildcards. The problem is explained in Effective Java, 3rd Edition, Item
31: Use bounded wildcards to increase API flexibility. First, generic types in Java are invariant, meaning that List<String> is
not a subtype of List<Object> . Why so? If List was not invariant, it would have been no better than Java's arrays, since the
following code would have compiled and caused an exception at runtime:

// Java
List<String> strs = new ArrayList<String>();
List<Object> objs = strs; // !!! The cause of the upcoming problem sits here. Java prohibits this!
objs.add(1); // Here we put an Integer into a list of Strings
String s = strs.get(0); // !!! ClassCastException: Cannot cast Integer to String

So, Java prohibits such things in order to guarantee run-time safety. But this has some implications. For example, consider the
addAll() method from Collection interface. What's the signature of this method? Intuitively, we'd put it this way:

// Java
interface Collection<E> ... {
 void addAll(Collection<E> items);
}

But then, we would not be able to do the following simple thing (which is perfectly safe):

// Java
void copyAll(Collection<Object> to, Collection<String> from) {
 to.addAll(from); // !!! Would not compile with the naive declaration of addAll:
 // Collection<String> is not a subtype of Collection<Object>
}

(In Java, we learned this lesson the hard way, see Effective Java, 3rd Edition, Item 28: Prefer lists to arrays)

That's why the actual signature of addAll() is the following:

// Java
interface Collection<E> ... {
 void addAll(Collection<? extends E> items);
}

Generics

Variance

85

http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html
http://www.oracle.com/technetwork/java/effectivejava-136174.html
http://www.oracle.com/technetwork/java/effectivejava-136174.html

The wildcard type argument ? extends E indicates that this method accepts a collection of objects of E or some subtype
of E , not just E itself. This means that we can safely read E 's from items (elements of this collection are instances of a
subclass of E), but cannot write to it since we do not know what objects comply to that unknown subtype of E . In return for
this limitation, we have the desired behaviour: Collection<String> is a subtype of Collection<? extends Object> . In "clever
words", the wildcard with an extends-bound (upper bound) makes the type covariant.

The key to understanding why this trick works is rather simple: if you can only take items from a collection, then using a
collection of String s and reading Object s from it is fine. Conversely, if you can only put items into the collection, it's OK to
take a collection of Object s and put String s into it: in Java we have List<? super String> a supertype of List<Object> .

The latter is called contravariance, and you can only call methods that take String as an argument on List<? super String>
(e.g., you can call add(String) or set(int, String)), while if you call something that returns T in List<T> , you don't get a
String , but an Object .

Joshua Bloch calls those objects you only read from Producers, and those you only write to Consumers. He recommends:
"For maximum flexibility, use wildcard types on input parameters that represent producers or consumers", and proposes the
following mnemonic:

PECS stands for Producer-Extends, Consumer-Super.

NOTE: if you use a producer-object, say, List<? extends Foo> , you are not allowed to call add() or set() on this object, but
this does not mean that this object is immutable: for example, nothing prevents you from calling clear() to remove all items
from the list, since clear() does not take any parameters at all. The only thing guaranteed by wildcards (or other types of
variance) is type safety. Immutability is a completely different story.

Suppose we have a generic interface Source<T> that does not have any methods that take T as a parameter, only methods
that return T :

// Java
interface Source<T> {
 T nextT();
}

Then, it would be perfectly safe to store a reference to an instance of Source<String> in a variable of type Source<Object> –
there are no consumer-methods to call. But Java does not know this, and still prohibits it:

// Java
void demo(Source<String> strs) {
 Source<Object> objects = strs; // !!! Not allowed in Java
 // ...
}

To fix this, we have to declare objects of type Source<? extends Object> , which is sort of meaningless, because we can call all
the same methods on such a variable as before, so there's no value added by the more complex type. But the compiler does
not know that.

In Kotlin, there is a way to explain this sort of thing to the compiler. This is called declaration-site variance: we can annotate
the type parameter T of Source to make sure that it is only returned (produced) from members of Source<T> , and never
consumed. To do this we provide the out modifier:

interface Source<out T> {
 fun nextT(): T
}

fun demo(strs: Source<String>) {
 val objects: Source<Any> = strs // This is OK, since T is an out-parameter
 // ...
}

Declaration-site variance

86

The general rule is: when a type parameter T of a class C is declared out, it may occur only in out-position in the members of
C , but in return C<Base> can safely be a supertype of C<Derived> .

In "clever words" they say that the class C is covariant in the parameter T , or that T is a covariant type parameter. You can
think of C as being a producer of T 's, and NOT a consumer of T 's.

The out modifier is called a variance annotation, and since it is provided at the type parameter declaration site, we talk about
declaration-site variance. This is in contrast with Java's use-site variance where wildcards in the type usages make the
types covariant.

In addition to out, Kotlin provides a complementary variance annotation: in. It makes a type parameter contravariant: it can
only be consumed and never produced. A good example of a contravariant type is Comparable :

interface Comparable<in T> {
 operator fun compareTo(other: T): Int
}

fun demo(x: Comparable<Number>) {
 x.compareTo(1.0) // 1.0 has type Double, which is a subtype of Number
 // Thus, we can assign x to a variable of type Comparable<Double>
 val y: Comparable<Double> = x // OK!
}

We believe that the words in and out are self-explaining (as they were successfully used in C# for quite some time already),
thus the mnemonic mentioned above is not really needed, and one can rephrase it for a higher purpose:

The Existential Transformation: Consumer in, Producer out! :-)

It is very convenient to declare a type parameter T as out and avoid trouble with subtyping on the use site, but some classes
can't actually be restricted to only return T 's! A good example of this is Array:

class Array<T>(val size: Int) {
 fun get(index: Int): T { /* ... */ }
 fun set(index: Int, value: T) { /* ... */ }
}

This class cannot be either co- or contravariant in T . And this imposes certain inflexibilities. Consider the following function:

fun copy(from: Array<Any>, to: Array<Any>) {
 assert(from.size == to.size)
 for (i in from.indices)
 to[i] = from[i]
}

This function is supposed to copy items from one array to another. Let's try to apply it in practice:

val ints: Array<Int> = arrayOf(1, 2, 3)
val any = Array<Any>(3) { "" }
copy(ints, any) // Error: expects (Array<Any>, Array<Any>)

Here we run into the same familiar problem: Array<T> is invariant in T , thus neither of Array<Int> and Array<Any> is a
subtype of the other. Why? Again, because copy might be doing bad things, i.e. it might attempt to write, say, a String to from ,
and if we actually passed an array of Int there, a ClassCastException would have been thrown sometime later.

Then, the only thing we want to ensure is that copy() does not do any bad things. We want to prohibit it from writing to from ,
and we can:

Type projections

Use-site variance: Type projections

87

http://en.wikipedia.org/wiki/Existentialism

fun copy(from: Array<out Any>, to: Array<Any>) {
 // ...
}

What has happened here is called type projection: we said that from is not simply an array, but a restricted (projected) one:
we can only call those methods that return the type parameter T , in this case it means that we can only call get() . This is our
approach to use-site variance, and corresponds to Java's Array<? extends Object> , but in a slightly simpler way.

You can project a type with in as well:

fun fill(dest: Array<in String>, value: String) {
 // ...
}

Array<in String> corresponds to Java's Array<? super String> , i.e. you can pass an array of CharSequence or an array of
Object to the fill() function.

Sometimes you want to say that you know nothing about the type argument, but still want to use it in a safe way. The safe way
here is to define such a projection of the generic type, that every concrete instantiation of that generic type would be a subtype
of that projection.

Kotlin provides so called star-projection syntax for this:

For Foo<out T : TUpper> , where T is a covariant type parameter with the upper bound TUpper , Foo<*> is equivalent to
Foo<out TUpper> . It means that when the T is unknown you can safely read values of TUpper from Foo<*> .

For Foo<in T> , where T is a contravariant type parameter, Foo<*> is equivalent to Foo<in Nothing> . It means there is
nothing you can write to Foo<*> in a safe way when T is unknown.

For Foo<T : TUpper> , where T is an invariant type parameter with the upper bound TUpper , Foo<*> is equivalent to
Foo<out TUpper> for reading values and to Foo<in Nothing> for writing values.

If a generic type has several type parameters each of them can be projected independently. For example, if the type is declared
as interface Function<in T, out U> we can imagine the following star-projections:

Function<*, String> means Function<in Nothing, String> ;

Function<Int, *> means Function<Int, out Any?> ;

Function<*, *> means Function<in Nothing, out Any?> .

Note: star-projections are very much like Java's raw types, but safe.

Not only classes can have type parameters. Functions can, too. Type parameters are placed before the name of the function:

fun <T> singletonList(item: T): List<T> {
 // ...
}

fun <T> T.basicToString() : String { // extension function
 // ...
}

To call a generic function, specify the type arguments at the call site after the name of the function:

val l = singletonList<Int>(1)

Type arguments can be omitted if they can be inferred from the context, so the following example works as well:

Star-projections

—

—

—

—

—

—

Generic functions

88

val l = singletonList(1)

The set of all possible types that can be substituted for a given type parameter may be restricted by generic constraints.

The most common type of constraint is an upper bound that corresponds to Java's extends keyword:

fun <T : Comparable<T>> sort(list: List<T>) {
 // ...
}

The type specified after a colon is the upper bound: only a subtype of Comparable<T> may be substituted for T . For
example:

sort(listOf(1, 2, 3)) // OK. Int is a subtype of Comparable<Int>
sort(listOf(HashMap<Int, String>())) // Error: HashMap<Int, String> is not a subtype of
Comparable<HashMap<Int, String>>

The default upper bound (if none specified) is Any? . Only one upper bound can be specified inside the angle brackets. If the
same type parameter needs more than one upper bound, we need a separate where-clause:

fun <T> copyWhenGreater(list: List<T>, threshold: T): List<String>
 where T : CharSequence,
 T : Comparable<T> {
 return list.filter { it > threshold }.map { it.toString() }
}

The type safety checks that Kotlin performs for generic declaration usages are only done at compile time. At runtime, the
instances of generic types do not hold any information about their actual type arguments. The type information is said to be
erased. For example, the instances of Foo<Bar> and Foo<Baz?> are erased to just Foo<*> .

Therefore, there is no general way to check whether an instance of a generic type was created with certain type arguments at
runtime, and the compiler prohibits such is-checks.

Type casts to generic types with concrete type arguments, e.g. foo as List<String> , cannot be checked at runtime.
These unchecked casts can be used when type safety is implied by the high-level program logic but cannot be inferred directly
by the compiler. The compiler issues a warning on unchecked casts, and at runtime, only the non-generic part is checked
(equivalent to foo as List<*>).

The type arguments of generic function calls are also only checked at compile time. Inside the function bodies, the type
parameters cannot be used for type checks, and type casts to type parameters (foo as T) are unchecked. However, reified
type parameters of inline functions are substituted by the actual type arguments in the inlined function body at the call sites and
thus can be used for type checks and casts, with the same restrictions for instances of generic types as described above.

Generic constraints

Upper bounds

Type erasure

89

Classes can be nested in other classes:

class Outer {
 private val bar: Int = 1
 class Nested {
 fun foo() = 2
 }
}

val demo = Outer.Nested().foo() // == 2

A class may be marked as inner to be able to access members of outer class. Inner classes carry a reference to an object of an
outer class:

class Outer {
 private val bar: Int = 1
 inner class Inner {
 fun foo() = bar
 }
}

val demo = Outer().Inner().foo() // == 1

See Qualified this expressions to learn about disambiguation of this in inner classes.

Anonymous inner class instances are created using an object expression:

window.addMouseListener(object: MouseAdapter() {
 override fun mouseClicked(e: MouseEvent) {
 // ...
 }

 override fun mouseEntered(e: MouseEvent) {
 // ...
 }
})

If the object is an instance of a functional Java interface (i.e. a Java interface with a single abstract method), you can create it
using a lambda expression prefixed with the type of the interface:

val listener = ActionListener { println("clicked") }

Nested and Inner Classes

Inner classes

Anonymous inner classes

90

The most basic usage of enum classes is implementing type-safe enums:

enum class Direction {
 NORTH, SOUTH, WEST, EAST
}

Each enum constant is an object. Enum constants are separated with commas.

Since each enum is an instance of the enum class, they can be initialized as:

enum class Color(val rgb: Int) {
 RED(0xFF0000),
 GREEN(0x00FF00),
 BLUE(0x0000FF)
}

Enum constants can also declare their own anonymous classes:

enum class ProtocolState {
 WAITING {
 override fun signal() = TALKING
 },

 TALKING {
 override fun signal() = WAITING
 };

 abstract fun signal(): ProtocolState
}

with their corresponding methods, as well as overriding base methods. Note that if the enum class defines any members, you
need to separate the enum constant definitions from the member definitions with a semicolon, just like in Java.

Enum entries cannot contain nested types other than inner classes (deprecated in Kotlin 1.2).

Just like in Java, enum classes in Kotlin have synthetic methods allowing to list the defined enum constants and to get an enum
constant by its name. The signatures of these methods are as follows (assuming the name of the enum class is EnumClass):

EnumClass.valueOf(value: String): EnumClass
EnumClass.values(): Array<EnumClass>

The valueOf() method throws an IllegalArgumentException if the specified name does not match any of the enum
constants defined in the class.

Since Kotlin 1.1, it's possible to access the constants in an enum class in a generic way, using the enumValues<T>() and
enumValueOf<T>() functions:

Enum Classes

Initialization

Anonymous Classes

Working with Enum Constants

91

enum class RGB { RED, GREEN, BLUE }

inline fun <reified T : Enum<T>> printAllValues() {
 print(enumValues<T>().joinToString { it.name })
}

printAllValues<RGB>() // prints RED, GREEN, BLUE

Every enum constant has properties to obtain its name and position in the enum class declaration:

val name: String
val ordinal: Int

The enum constants also implement the Comparable interface, with the natural order being the order in which they are defined
in the enum class.

92

Sometimes we need to create an object of a slight modification of some class, without explicitly declaring a new subclass for it.
Java handles this case with anonymous inner classes. Kotlin slightly generalizes this concept with object expressions and object
declarations.

To create an object of an anonymous class that inherits from some type (or types), we write:

window.addMouseListener(object : MouseAdapter() {
 override fun mouseClicked(e: MouseEvent) {
 // ...
 }

 override fun mouseEntered(e: MouseEvent) {
 // ...
 }
})

If a supertype has a constructor, appropriate constructor parameters must be passed to it. Many supertypes may be specified
as a comma-separated list after the colon:

open class A(x: Int) {
 public open val y: Int = x
}

interface B {...}

val ab: A = object : A(1), B {
 override val y = 15
}

If, by any chance, we need "just an object", with no nontrivial supertypes, we can simply say:

fun foo() {
 val adHoc = object {
 var x: Int = 0
 var y: Int = 0
 }
 print(adHoc.x + adHoc.y)
}

Note that anonymous objects can be used as types only in local and private declarations. If you use an anonymous object as a
return type of a public function or the type of a public property, the actual type of that function or property will be the declared
supertype of the anonymous object, or Any if you didn't declare any supertype. Members added in the anonymous object will
not be accessible.

Object Expressions and Declarations

Object expressions

93

class C {
 // Private function, so the return type is the anonymous object type
 private fun foo() = object {
 val x: String = "x"
 }

 // Public function, so the return type is Any
 fun publicFoo() = object {
 val x: String = "x"
 }

 fun bar() {
 val x1 = foo().x // Works
 val x2 = publicFoo().x // ERROR: Unresolved reference 'x'
 }
}

Just like Java's anonymous inner classes, code in object expressions can access variables from the enclosing scope. (Unlike Java,
this is not restricted to final variables.)

fun countClicks(window: JComponent) {
 var clickCount = 0
 var enterCount = 0

 window.addMouseListener(object : MouseAdapter() {
 override fun mouseClicked(e: MouseEvent) {
 clickCount++
 }

 override fun mouseEntered(e: MouseEvent) {
 enterCount++
 }
 })
 // ...
}

Singleton may be useful in several cases, and Kotlin (after Scala) makes it easy to declare singletons:

object DataProviderManager {
 fun registerDataProvider(provider: DataProvider) {
 // ...
 }

 val allDataProviders: Collection<DataProvider>
 get() = // ...
}

This is called an object declaration, and it always has a name following the object keyword. Just like a variable declaration, an
object declaration is not an expression, and cannot be used on the right hand side of an assignment statement.

Object declaration's initialization is thread-safe.

To refer to the object, we use its name directly:

DataProviderManager.registerDataProvider(...)

Such objects can have supertypes:

Object declarations

94

http://en.wikipedia.org/wiki/Singleton_pattern

object DefaultListener : MouseAdapter() {
 override fun mouseClicked(e: MouseEvent) {
 // ...
 }

 override fun mouseEntered(e: MouseEvent) {
 // ...
 }
}

NOTE: object declarations can't be local (i.e. be nested directly inside a function), but they can be nested into other object
declarations or non-inner classes.

An object declaration inside a class can be marked with the companion keyword:

class MyClass {
 companion object Factory {
 fun create(): MyClass = MyClass()
 }
}

Members of the companion object can be called by using simply the class name as the qualifier:

val instance = MyClass.create()

The name of the companion object can be omitted, in which case the name Companion will be used:

class MyClass {
 companion object {
 }
}

val x = MyClass.Companion

Note that, even though the members of companion objects look like static members in other languages, at runtime those are
still instance members of real objects, and can, for example, implement interfaces:

interface Factory<T> {
 fun create(): T
}

class MyClass {
 companion object : Factory<MyClass> {
 override fun create(): MyClass = MyClass()
 }
}

However, on the JVM you can have members of companion objects generated as real static methods and fields, if you use the
@JvmStatic annotation. See the Java interoperability section for more details.

There is one important semantic difference between object expressions and object declarations:

object expressions are executed (and initialized) immediately, where they are used;
object declarations are initialized lazily, when accessed for the first time;
a companion object is initialized when the corresponding class is loaded (resolved), matching the semantics of a Java static
initializer.

Companion Objects

Semantic diAerence between object expressions and declarations

—
—
—

95

96

Delegated properties are described on a separate page: Delegated Properties.

The Delegation pattern has proven to be a good alternative to implementation inheritance, and Kotlin supports it natively
requiring zero boilerplate code. A class Derived can implement an interface Base by delegating all of its public members to a
specified object:

The by-clause in the supertype list for Derived indicates that b will be stored internally in objects of Derived and the compiler
will generate all the methods of Base that forward to b .

Overrides work as you might expect: the compiler will use your override implementations instead of those in the delegate
object. If we were to add override fun print() { print("abc") } to Derived , the program would print "abc" instead of "10"
when print is called:

Note, however, that members overridden in this way do not get called from the members of the delegate object, which can only
access its own implementations of the interface members:

Delegation

Property Delegation

Implementation by Delegation

Overriding a member of an interface implemented by delegation

97

https://en.wikipedia.org/wiki/Delegation_pattern

There are certain common kinds of properties, that, though we can implement them manually every time we need them, would
be very nice to implement once and for all, and put into a library. Examples include:

lazy properties: the value gets computed only upon first access;
observable properties: listeners get notified about changes to this property;
storing properties in a map, instead of a separate field for each property.

To cover these (and other) cases, Kotlin supports delegated properties:

class Example {
 var p: String by Delegate()
}

The syntax is: val/var <property name>: <Type> by <expression> . The expression after by is the delegate, because get()
(and set()) corresponding to the property will be delegated to its getValue() and setValue() methods. Property delegates
don’t have to implement any interface, but they have to provide a getValue() function (and setValue() — for vars). For
example:

class Delegate {
 operator fun getValue(thisRef: Any?, property: KProperty<*>): String {
 return "$thisRef, thank you for delegating '${property.name}' to me!"
 }

 operator fun setValue(thisRef: Any?, property: KProperty<*>, value: String) {
 println("$value has been assigned to '${property.name}' in $thisRef.")
 }
}

When we read from p that delegates to an instance of Delegate , the getValue() function from Delegate is called, so that its
first parameter is the object we read p from and the second parameter holds a description of p itself (e.g. you can take its
name). For example:

val e = Example()
println(e.p)

This prints:

Example@33a17727, thank you for delegating ‘p’ to me!

Similarly, when we assign to p , the setValue() function is called. The first two parameters are the same, and the third holds
the value being assigned:

e.p = "NEW"

This prints

NEW has been assigned to ‘p’ in Example@33a17727.

The specification of the requirements to the delegated object can be found below.

Note that since Kotlin 1.1 you can declare a delegated property inside a function or code block, it shouldn't necessarily be a
member of a class. Below you can find the example.

The Kotlin standard library provides factory methods for several useful kinds of delegates.

Delegated Properties

—
—
—

Standard Delegates

Lazy

98

lazy() is a function that takes a lambda and returns an instance of Lazy<T> which can serve as a delegate for implementing a
lazy property: the first call to get() executes the lambda passed to lazy() and remembers the result, subsequent calls to
get() simply return the remembered result.

val lazyValue: String by lazy {
 println("computed!")
 "Hello"
}

fun main(args: Array<String>) {
 println(lazyValue)
 println(lazyValue)
}

This example prints:

computed!
Hello
Hello

By default, the evaluation of lazy properties is synchronized: the value is computed only in one thread, and all threads will see
the same value. If the synchronization of initialization delegate is not required, so that multiple threads can execute it
simultaneously, pass LazyThreadSafetyMode.PUBLICATION as a parameter to the lazy() function. And if you're sure that the
initialization will always happen on a single thread, you can use LazyThreadSafetyMode.NONE mode, which doesn't incur any
thread-safety guarantees and the related overhead.

Delegates.observable() takes two arguments: the initial value and a handler for modifications. The handler gets called every
time we assign to the property (after the assignment has been performed). It has three parameters: a property being assigned
to, the old value and the new one:

import kotlin.properties.Delegates

class User {
 var name: String by Delegates.observable("<no name>") {
 prop, old, new ->
 println("$old -> $new")
 }
}

fun main(args: Array<String>) {
 val user = User()
 user.name = "first"
 user.name = "second"
}

This example prints:

<no name> -> first
first -> second

If you want to be able to intercept an assignment and "veto" it, use vetoable() instead of observable() . The handler passed
to the vetoable is called before the assignment of a new property value has been performed.

One common use case is storing the values of properties in a map. This comes up often in applications like parsing JSON or
doing other “dynamic” things. In this case, you can use the map instance itself as the delegate for a delegated property.

Observable

Storing Properties in a Map

99

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/lazy.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.properties/-delegates/observable.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.properties/-delegates/vetoable.html

class User(val map: Map<String, Any?>) {
 val name: String by map
 val age: Int by map
}

In this example, the constructor takes a map:

val user = User(mapOf(
 "name" to "John Doe",
 "age" to 25
))

Delegated properties take values from this map (by the string keys –– names of properties):

println(user.name) // Prints "John Doe"
println(user.age) // Prints 25

This works also for var’s properties if you use a MutableMap instead of read-only Map :

class MutableUser(val map: MutableMap<String, Any?>) {
 var name: String by map
 var age: Int by map
}

You can declare local variables as delegated properties. For instance, you can make a local variable lazy:

fun example(computeFoo: () -> Foo) {
 val memoizedFoo by lazy(computeFoo)

 if (someCondition && memoizedFoo.isValid()) {
 memoizedFoo.doSomething()
 }
}

The memoizedFoo variable will be computed on the first access only. If someCondition fails, the variable won't be computed at
all.

Here we summarize requirements to delegate objects.

For a read-only property (i.e. a val), a delegate has to provide a function named getValue that takes the following
parameters:

thisRef — must be the same or a supertype of the property owner (for extension properties — the type being extended);

property — must be of type KProperty<*> or its supertype.

this function must return the same type as property (or its subtype).

For a mutable property (a var), a delegate has to additionally provide a function named setValue that takes the following
parameters:

thisRef — same as for getValue() ;

property — same as for getValue() ;

new value — must be of the same type as a property or its supertype.

Local Delegated Properties (since 1.1)

Property Delegate Requirements

—

—

—

—

—

100

getValue() and/or setValue() functions may be provided either as member functions of the delegate class or extension
functions. The latter is handy when you need to delegate property to an object which doesn't originally provide these functions.
Both of the functions need to be marked with the operator keyword.

The delegate class may implement one of the interfaces ReadOnlyProperty and ReadWriteProperty containing the required
operator methods. These interfaces are declared in the Kotlin standard library:

interface ReadOnlyProperty<in R, out T> {
 operator fun getValue(thisRef: R, property: KProperty<*>): T
}

interface ReadWriteProperty<in R, T> {
 operator fun getValue(thisRef: R, property: KProperty<*>): T
 operator fun setValue(thisRef: R, property: KProperty<*>, value: T)
}

Under the hood for every delegated property the Kotlin compiler generates an auxiliary property and delegates to it. For
instance, for the property prop the hidden property prop$delegate is generated, and the code of the accessors simply
delegates to this additional property:

class C {
 var prop: Type by MyDelegate()
}

// this code is generated by the compiler instead:
class C {
 private val prop$delegate = MyDelegate()
 var prop: Type
 get() = prop$delegate.getValue(this, this::prop)
 set(value: Type) = prop$delegate.setValue(this, this::prop, value)
}

The Kotlin compiler provides all the necessary information about prop in the arguments: the first argument this refers to an
instance of the outer class C and this::prop is a reflection object of the KProperty type describing prop itself.

Note that the syntax this::prop to refer a bound callable reference in the code directly is available only since Kotlin 1.1.

By defining the provideDelegate operator you can extend the logic of creating the object to which the property
implementation is delegated. If the object used on the right hand side of by defines provideDelegate as a member or
extension function, that function will be called to create the property delegate instance.

One of the possible use cases of provideDelegate is to check property consistency when the property is created, not only in
its getter or setter.

For example, if you want to check the property name before binding, you can write something like this:

Translation Rules

Providing a delegate (since 1.1)

101

class ResourceDelegate<T> : ReadOnlyProperty<MyUI, T> {
 override fun getValue(thisRef: MyUI, property: KProperty<*>): T { ... }
}

class ResourceLoader<T>(id: ResourceID<T>) {
 operator fun provideDelegate(
 thisRef: MyUI,
 prop: KProperty<*>
): ReadOnlyProperty<MyUI, T> {
 checkProperty(thisRef, prop.name)
 // create delegate
 return ResourceDelegate()
 }

 private fun checkProperty(thisRef: MyUI, name: String) { ... }
}

class MyUI {
 fun <T> bindResource(id: ResourceID<T>): ResourceLoader<T> { ... }

 val image by bindResource(ResourceID.image_id)
 val text by bindResource(ResourceID.text_id)
}

The parameters of provideDelegate are the same as for getValue :

thisRef — must be the same or a supertype of the property owner (for extension properties — the type being extended);

property — must be of type KProperty<*> or its supertype.

The provideDelegate method is called for each property during the creation of the MyUI instance, and it performs the
necessary validation right away.

Without this ability to intercept the binding between the property and its delegate, to achieve the same functionality you'd have
to pass the property name explicitly, which isn't very convenient:

// Checking the property name without "provideDelegate" functionality
class MyUI {
 val image by bindResource(ResourceID.image_id, "image")
 val text by bindResource(ResourceID.text_id, "text")
}

fun <T> MyUI.bindResource(
 id: ResourceID<T>,
 propertyName: String
): ReadOnlyProperty<MyUI, T> {
 checkProperty(this, propertyName)
 // create delegate
}

In the generated code, the provideDelegate method is called to initialize the auxiliary prop$delegate property. Compare the
generated code for the property declaration val prop: Type by MyDelegate() with the generated code above (when the
provideDelegate method is not present):

—

—

102

class C {
 var prop: Type by MyDelegate()
}

// this code is generated by the compiler
// when the 'provideDelegate' function is available:
class C {
 // calling "provideDelegate" to create the additional "delegate" property
 private val prop$delegate = MyDelegate().provideDelegate(this, this::prop)
 val prop: Type
 get() = prop$delegate.getValue(this, this::prop)
}

Note that the provideDelegate method affects only the creation of the auxiliary property and doesn't affect the code
generated for getter or setter.

103

Functions and Lambdas

Functions in Kotlin are declared using the fun keyword:

fun double(x: Int): Int {
 return 2 * x
}

Calling functions uses the traditional approach:

val result = double(2)

Calling member functions uses the dot notation:

Sample().foo() // create instance of class Sample and call foo

Function parameters are defined using Pascal notation, i.e. name: type. Parameters are separated using commas. Each
parameter must be explicitly typed:

fun powerOf(number: Int, exponent: Int) {
...
}

Function parameters can have default values, which are used when a corresponding argument is omitted. This allows for a
reduced number of overloads compared to other languages:

fun read(b: Array<Byte>, off: Int = 0, len: Int = b.size) {
...
}

Default values are defined using the = after type along with the value.

Overriding methods always use the same default parameter values as the base method. When overriding a method with default
parameters values, the default parameter values must be omitted from the signature:

Functions

Function Declarations

Function Usage

Parameters

Default Arguments

104

open class A {
 open fun foo(i: Int = 10) { ... }
}

class B : A() {
 override fun foo(i: Int) { ... } // no default value allowed
}

If a default parameter precedes a parameter with no default value, the default value can be used only by calling the function with
named arguments:

fun foo(bar: Int = 0, baz: Int) { /* ... */ }

foo(baz = 1) // The default value bar = 0 is used

But if a last argument lambda is passed to a function call outside the parentheses, passing no values for the default parameters
is allowed:

fun foo(bar: Int = 0, baz: Int = 1, qux: () -> Unit) { /* ... */ }

foo(1) { println("hello") } // Uses the default value baz = 1
foo { println("hello") } // Uses both default values bar = 0 and baz = 1

Function parameters can be named when calling functions. This is very convenient when a function has a high number of
parameters or default ones.

Given the following function:

fun reformat(str: String,
 normalizeCase: Boolean = true,
 upperCaseFirstLetter: Boolean = true,
 divideByCamelHumps: Boolean = false,
 wordSeparator: Char = ' ') {
...
}

we could call this using default arguments:

reformat(str)

However, when calling it with non-default, the call would look something like:

reformat(str, true, true, false, '_')

With named arguments we can make the code much more readable:

reformat(str,
 normalizeCase = true,
 upperCaseFirstLetter = true,
 divideByCamelHumps = false,
 wordSeparator = '_'
)

and if we do not need all arguments:

reformat(str, wordSeparator = '_')

Named Arguments

105

When a function is called with both positional and named arguments, all the positional arguments should be placed before the
first named one. For example, the call f(1, y = 2) is allowed, but f(x = 1, 2) is not.

Variable number of arguments (vararg) can be passed in the named form by using the spread operator:

fun foo(vararg strings: String) { /* ... */ }

foo(strings = *arrayOf("a", "b", "c"))

Note that the named argument syntax cannot be used when calling Java functions, because Java bytecode does not always
preserve names of function parameters.

If a function does not return any useful value, its return type is Unit . Unit is a type with only one value - Unit . This value does
not have to be returned explicitly:

fun printHello(name: String?): Unit {
 if (name != null)
 println("Hello ${name}")
 else
 println("Hi there!")
 // `return Unit` or `return` is optional
}

The Unit return type declaration is also optional. The above code is equivalent to:

fun printHello(name: String?) {
 ...
}

When a function returns a single expression, the curly braces can be omitted and the body is specified after a = symbol:

fun double(x: Int): Int = x * 2

Explicitly declaring the return type is optional when this can be inferred by the compiler:

fun double(x: Int) = x * 2

Functions with block body must always specify return types explicitly, unless it's intended for them to return Unit , in which case
it is optional. Kotlin does not infer return types for functions with block bodies because such functions may have complex control
flow in the body, and the return type will be non-obvious to the reader (and sometimes even for the compiler).

A parameter of a function (normally the last one) may be marked with vararg modifier:

fun <T> asList(vararg ts: T): List<T> {
 val result = ArrayList<T>()
 for (t in ts) // ts is an Array
 result.add(t)
 return result
}

allowing a variable number of arguments to be passed to the function:

Unit-returning functions

Single-Expression functions

Explicit return types

Variable number of arguments (Varargs)

106

val list = asList(1, 2, 3)

Inside a function a vararg -parameter of type T is visible as an array of T , i.e. the ts variable in the example above has type
Array<out T> .

Only one parameter may be marked as vararg . If a vararg parameter is not the last one in the list, values for the following
parameters can be passed using the named argument syntax, or, if the parameter has a function type, by passing a lambda
outside parentheses.

When we call a vararg -function, we can pass arguments one-by-one, e.g. asList(1, 2, 3) , or, if we already have an array
and want to pass its contents to the function, we use the spread operator (prefix the array with *):

val a = arrayOf(1, 2, 3)
val list = asList(-1, 0, *a, 4)

Functions marked with the infix keyword can also be called using the infix notation (omitting the dot and the parentheses for
the call). Infix functions must satisfy the following requirements:

They must be member functions or extension functions;
They must have a single parameter;
The parameter must not accept variable number of arguments and must have no default value.

infix fun Int.shl(x: Int): Int {
 // ...
}

// calling the function using the infix notation
1 shl 2

// is the same as
1.shl(2)

In5x function calls have lower precedence than the arithmetic operators, type casts, and the rangeTo operator. The
following expressions are equivalent:

1 shl 2 + 3 and 1 shl (2 + 3)

0 until n * 2 and 0 until (n * 2)

xs union ys as Set<*> and xs union (ys as Set<*>)

On the other hand, in5x function call's precedence is higher than that of the boolean operators && and ||, is- and in-
checks, and some other operators. These expressions are equivalent as well:

a && b xor c and a && (b xor c)

a xor b in c and (a xor b) in c

See the Grammar reference for the complete operators precedence hierarchy.

Note that infix functions always require both the receiver and the parameter to be specified. When you're calling a method on
the current receiver using the infix notation, you need to use this explicitly; unlike regular method calls, it cannot be omitted.
This is required to ensure unambiguous parsing.

In1x notation

—
—
—

—

—

—

—

—

107

class MyStringCollection {
 infix fun add(s: String) { /* ... */ }

 fun build() {
 this add "abc" // Correct
 add("abc") // Correct
 add "abc" // Incorrect: the receiver must be specified
 }
}

In Kotlin functions can be declared at top level in a file, meaning you do not need to create a class to hold a function, like
languages such as Java, C# or Scala. In addition to top level functions, Kotlin functions can also be declared local, as member
functions and extension functions.

Kotlin supports local functions, i.e. a function inside another function:

fun dfs(graph: Graph) {
 fun dfs(current: Vertex, visited: Set<Vertex>) {
 if (!visited.add(current)) return
 for (v in current.neighbors)
 dfs(v, visited)
 }

 dfs(graph.vertices[0], HashSet())
}

Local function can access local variables of outer functions (i.e. the closure), so in the case above, the visited can be a local
variable:

fun dfs(graph: Graph) {
 val visited = HashSet<Vertex>()
 fun dfs(current: Vertex) {
 if (!visited.add(current)) return
 for (v in current.neighbors)
 dfs(v)
 }

 dfs(graph.vertices[0])
}

A member function is a function that is defined inside a class or object:

class Sample() {
 fun foo() { print("Foo") }
}

Member functions are called with dot notation:

Sample().foo() // creates instance of class Sample and calls foo

For more information on classes and overriding members see Classes and Inheritance.

Function Scope

Local Functions

Member Functions

Generic Functions

108

Functions can have generic parameters which are specified using angle brackets before the function name:

fun <T> singletonList(item: T): List<T> {
 // ...
}

For more information on generic functions see Generics.

Inline functions are explained here.

Extension functions are explained in their own section.

Higher-Order functions and Lambdas are explained in their own section.

Kotlin supports a style of functional programming known as tail recursion. This allows some algorithms that would normally be
written using loops to instead be written using a recursive function, but without the risk of stack overflow. When a function is
marked with the tailrec modifier and meets the required form, the compiler optimises out the recursion, leaving behind a fast
and efficient loop based version instead:

tailrec fun findFixPoint(x: Double = 1.0): Double
 = if (x == Math.cos(x)) x else findFixPoint(Math.cos(x))

This code calculates the fixpoint of cosine, which is a mathematical constant. It simply calls Math.cos repeatedly starting at 1.0
until the result doesn't change any more, yielding a result of 0.7390851332151607. The resulting code is equivalent to this
more traditional style:

private fun findFixPoint(): Double {
 var x = 1.0
 while (true) {
 val y = Math.cos(x)
 if (x == y) return x
 x = y
 }
}

To be eligible for the tailrec modifier, a function must call itself as the last operation it performs. You cannot use tail recursion
when there is more code after the recursive call, and you cannot use it within try/catch/finally blocks. Currently tail recursion is
only supported in the JVM backend.

Inline Functions

Extension Functions

Higher-Order Functions and Lambdas

Tail recursive functions

109

https://en.wikipedia.org/wiki/Tail_call

Kotlin functions are first-class, which means that they can be stored in variables and data structures, passed as arguments to
and returned from other higher-order functions. You can operate with functions in any way that is possible for other non-function
values.

To facilitate this, Kotlin, as a statically typed programming language, uses a family of function types to represent functions and
provides a set of specialized language constructs, such as lambda expressions.

A higher-order function is a function that takes functions as parameters, or returns a function.

A good example is the functional programming idiom fold for collections, which takes an initial accumulator value and a
combining function and builds its return value by consecutively combining current accumulator value with each collection
element, replacing the accumulator:

fun <T, R> Collection<T>.fold(
 initial: R,
 combine: (acc: R, nextElement: T) -> R
): R {
 var accumulator: R = initial
 for (element: T in this) {
 accumulator = combine(accumulator, element)
 }
 return accumulator
}

In the code above, the parameter combine has a function type (R, T) -> R , so it accepts a function that takes two arguments
of types R and T and returns a value of type R . It is invoked inside the for-loop, and the return value is then assigned to
accumulator .

To call fold , we need to pass it an instance of the function type as an argument, and lambda expressions (described in more
detail below) are widely used for this purpose at higher-order function call sites:

 val items = listOf(1, 2, 3, 4, 5)

 // Lambdas are code blocks enclosed in curly braces.
 items.fold(0, {
 // When a lambda has parameters, they go first, followed by '->'
 acc: Int, i: Int ->
 print("acc = $acc, i = $i, ")
 val result = acc + i
 println("result = $result")
 // The last expression in a lambda is considered the return value:
 result
 })

 // Parameter types in a lambda are optional if they can be inferred:
 val joinedToString = items.fold("Elements:", { acc, i -> acc + " " + i })

 // Function references can also be used for higher-order function calls:
 val product = items.fold(1, Int::times)

The following sections explain in more detail the concepts mentioned so far.

Kotlin uses a family of function types like (Int) -> String for declarations that deal with functions: val onClick: () -> Unit
=

These types have a special notation that corresponds to the signatures of the functions, i.e. their parameters and return values:

Higher-Order Functions and Lambdas

Higher-Order Functions

Function types

110

https://en.wikipedia.org/wiki/First-class_function
https://en.wikipedia.org/wiki/Fold_(higher-order_function)

All function types have a parenthesized parameter types list and a return type: (A, B) -> C denotes a type that
represents functions taking two arguments of types A and B and returning a value of type C . The parameter types list may
be empty, as in () -> A . The Unit return type cannot be omitted.

Function types can optionally have an additional receiver type, which is specified before a dot in the notation: the type A.
(B) -> C represents functions that can be called on a receiver object of A with a parameter of B and return a value of C .
Function literals with receiver are often used along with these types.

Suspending functions belong to function types of a special kind, which have a suspend modifier in the notation, such as
suspend () -> Unit or suspend A.(B) -> C .

The function type notation can optionally include names for the function parameters: (x: Int, y: Int) -> Point . These
names can be used for documenting the meaning of the parameters.

To specify that a function type is nullable, use parentheses: ((Int, Int) -> Int)?.

Function types can be combined using parentheses: (Int) -> ((Int) -> Unit)

The arrow notation is right-associative, (Int) -> (Int) -> Unit is equivalent to the previous example, but not to ((Int)
-> (Int)) -> Unit.

You can also give a function type an alternative name by using a type alias:

typealias ClickHandler = (Button, ClickEvent) -> Unit

There are several ways to obtain an instance of a function type:

Using a code block within a function literal, in one of the forms:
a lambda expression: { a, b -> a + b } ,

an anonymous function: fun(s: String): Int { return s.toIntOrNull() ?: 0 }

Function literals with receiver can be used as values of function types with receiver.

Using a callable reference to an existing declaration:
a top-level, local, member, or extension function: ::isOdd , String::toInt ,

a top-level, member, or extension property: List<Int>::size ,

a constructor: ::Regex

These include bound callable references that point to a member of a particular instance: foo::toString .

Using instances of a custom class that implements a function type as an interface:

 class IntTransformer: (Int) -> Int {
 override operator fun invoke(x: Int): Int = TODO()
 }

 val intFunction: (Int) -> Int = IntTransformer()

The compiler can infer the function types for variables if there is enough information:

val a = { i: Int -> i + 1 } // The inferred type is (Int) -> Int

Non-literal values of function types with and without receiver are interchangeable, so that the receiver can stand in for the first
parameter, and vice versa. For instance, a value of type (A, B) -> C can be passed or assigned where a A.(B) -> C is
expected and the other way around:

—

—

—

Instantiating a function type

—
—

—

—
—

—

—

—

111

 val repeat: String.(Int) -> String = { times -> repeat(times) }
 val twoParameters: (String, Int) -> String = repeat // OK

 fun runTransformation(f: (String, Int) -> String): String {
 return f("hello", 3)
 }
 val result = runTransformation(repeat) // OK

Note that a function type with no receiver is inferred by default, even if a variable is initialized with a reference to an
extension function. To alter that, specify the variable type explicitly.

A value of a function type can be invoked by using its invoke(...) operator: f.invoke(x) or just f(x) .

If the value has a receiver type, the receiver object should be passed as the first argument. Another way to invoke a value of a
function type with receiver is to prepend it with the receiver object, as if the value were an extension function: 1.foo(2) ,

Example:

 val stringPlus: (String, String) -> String = String::plus
 val intPlus: Int.(Int) -> Int = Int::plus

 println(stringPlus.invoke("<-", "->"))
 println(stringPlus("Hello, ", "world!"))

 println(intPlus.invoke(1, 1))
 println(intPlus(1, 2))
 println(2.intPlus(3)) // extension-like call

Sometimes it is beneficial to use inline functions, which provide flexible control flow, for higher-order functions.

Lambda expressions and anonymous functions are 'function literals', i.e. functions that are not declared, but passed immediately
as an expression. Consider the following example:

max(strings, { a, b -> a.length < b.length })

Function max is a higher-order function, it takes a function value as the second argument. This second argument is an
expression that is itself a function, i.e. a function literal, which is equivalent to the following named function:

fun compare(a: String, b: String): Boolean = a.length < b.length

The full syntactic form of lambda expressions is as follows:

val sum = { x: Int, y: Int -> x + y }

A lambda expression is always surrounded by curly braces, parameter declarations in the full syntactic form go inside curly
braces and have optional type annotations, the body goes after an -> sign. If the inferred return type of the lambda is not
Unit , the last (or possibly single) expression inside the lambda body is treated as the return value.

If we leave all the optional annotations out, what's left looks like this:

Invoking a function type instance

Inline functions

Lambda Expressions and Anonymous Functions

Lambda expression syntax

112

val sum: (Int, Int) -> Int = { x, y -> x + y }

In Kotlin, there is a convention that if the last parameter of a function accepts a function, a lambda expression that is passed as
the corresponding argument can be placed outside the parentheses:

val product = items.fold(1) { acc, e -> acc * e }

If the lambda is the only argument to that call, the parentheses can be omitted entirely:

run { println("...") }

It's very common that a lambda expression has only one parameter.

If the compiler can figure the signature out itself, it is allowed not to declare the only parameter and omit -> . The parameter will
be implicitly declared under the name it :

ints.filter { it > 0 } // this literal is of type '(it: Int) -> Boolean'

We can explicitly return a value from the lambda using the qualified return syntax. Otherwise, the value of the last expression is
implicitly returned.

Therefore, the two following snippets are equivalent:

ints.filter {
 val shouldFilter = it > 0
 shouldFilter
}

ints.filter {
 val shouldFilter = it > 0
 return@filter shouldFilter
}

This convention, along with passing a lambda expression outside parentheses, allows for LINQ-style code:

strings.filter { it.length == 5 }.sortedBy { it }.map { it.toUpperCase() }

If the lambda parameter is unused, you can place an underscore instead of its name:

map.forEach { _, value -> println("$value!") }

Destructuring in lambdas is described as a part of destructuring declarations.

One thing missing from the lambda expression syntax presented above is the ability to specify the return type of the function. In
most cases, this is unnecessary because the return type can be inferred automatically. However, if you do need to specify it
explicitly, you can use an alternative syntax: an anonymous function.

Passing a lambda to the last parameter

it: implicit name of a single parameter

Returning a value from a lambda expression

Underscore for unused variables (since 1.1)

Destructuring in lambdas (since 1.1)

Anonymous functions

113

http://msdn.microsoft.com/en-us/library/bb308959.aspx

fun(x: Int, y: Int): Int = x + y

An anonymous function looks very much like a regular function declaration, except that its name is omitted. Its body can be
either an expression (as shown above) or a block:

fun(x: Int, y: Int): Int {
 return x + y
}

The parameters and the return type are specified in the same way as for regular functions, except that the parameter types can
be omitted if they can be inferred from context:

ints.filter(fun(item) = item > 0)

The return type inference for anonymous functions works just like for normal functions: the return type is inferred automatically
for anonymous functions with an expression body and has to be specified explicitly (or is assumed to be Unit) for anonymous
functions with a block body.

Note that anonymous function parameters are always passed inside the parentheses. The shorthand syntax allowing to leave
the function outside the parentheses works only for lambda expressions.

One other difference between lambda expressions and anonymous functions is the behavior of non-local returns. A return
statement without a label always returns from the function declared with the fun keyword. This means that a return inside a
lambda expression will return from the enclosing function, whereas a return inside an anonymous function will return from the
anonymous function itself.

A lambda expression or anonymous function (as well as a local function and an object expression) can access its closure, i.e.
the variables declared in the outer scope. Unlike Java, the variables captured in the closure can be modified:

var sum = 0
ints.filter { it > 0 }.forEach {
 sum += it
}
print(sum)

Function types with receiver, such as A.(B) -> C , can be instantiated with a special form of function literals – function literals
with receiver.

As said above, Kotlin provides the ability to call an instance of a function type with receiver providing the receiver object.

Inside the body of the function literal, the receiver object passed to a call becomes an implicit this, so that you can access the
members of that receiver object without any additional qualifiers, or access the receiver object using a this expression.

This behavior is similar to extension functions, which also allow you to access the members of the receiver object inside the
body of the function.

Here is an example of a function literal with receiver along with its type, where plus is called on the receiver object:

val sum: Int.(Int) -> Int = { other -> plus(other) }

The anonymous function syntax allows you to specify the receiver type of a function literal directly. This can be useful if you need
to declare a variable of a function type with receiver, and to use it later.

val sum = fun Int.(other: Int): Int = this + other

Closures

Function literals with receiver

114

Lambda expressions can be used as function literals with receiver when the receiver type can be inferred from context. One of
the most important examples of their usage is type-safe builders:

class HTML {
 fun body() { ... }
}

fun html(init: HTML.() -> Unit): HTML {
 val html = HTML() // create the receiver object
 html.init() // pass the receiver object to the lambda
 return html
}

html { // lambda with receiver begins here
 body() // calling a method on the receiver object
}

115

Using higher-order functions imposes certain runtime penalties: each function is an object, and it captures a closure, i.e. those
variables that are accessed in the body of the function. Memory allocations (both for function objects and classes) and virtual
calls introduce runtime overhead.

But it appears that in many cases this kind of overhead can be eliminated by inlining the lambda expressions. The functions
shown below are good examples of this situation. I.e., the lock() function could be easily inlined at call-sites. Consider the
following case:

lock(l) { foo() }

Instead of creating a function object for the parameter and generating a call, the compiler could emit the following code:

l.lock()
try {
 foo()
}
finally {
 l.unlock()
}

Isn't it what we wanted from the very beginning?

To make the compiler do this, we need to mark the lock() function with the inline modifier:

inline fun <T> lock(lock: Lock, body: () -> T): T {
 // ...
}

The inline modifier affects both the function itself and the lambdas passed to it: all of those will be inlined into the call site.

Inlining may cause the generated code to grow; however, if we do it in a reasonable way (i.e. avoiding inlining large functions), it
will pay off in performance, especially at "megamorphic" call-sites inside loops.

In case you want only some of the lambdas passed to an inline function to be inlined, you can mark some of your function
parameters with the noinline modifier:

inline fun foo(inlined: () -> Unit, noinline notInlined: () -> Unit) {
 // ...
}

Inlinable lambdas can only be called inside the inline functions or passed as inlinable arguments, but noinline ones can be
manipulated in any way we like: stored in fields, passed around etc.

Note that if an inline function has no inlinable function parameters and no reified type parameters, the compiler will issue a
warning, since inlining such functions is very unlikely to be beneficial (you can suppress the warning if you are sure the inlining is
needed using the annotation @Suppress("NOTHING_TO_INLINE")).

In Kotlin, we can only use a normal, unqualified return to exit a named function or an anonymous function. This means that to
exit a lambda, we have to use a label, and a bare return is forbidden inside a lambda, because a lambda can not make the
enclosing function return:

Inline Functions

noinline

Non-local returns

116

fun foo() {
 ordinaryFunction {
 return // ERROR: can not make `foo` return here
 }
}

But if the function the lambda is passed to is inlined, the return can be inlined as well, so it is allowed:

fun foo() {
 inlineFunction {
 return // OK: the lambda is inlined
 }
}

Such returns (located in a lambda, but exiting the enclosing function) are called non-local returns. We are used to this sort of
construct in loops, which inline functions often enclose:

fun hasZeros(ints: List<Int>): Boolean {
 ints.forEach {
 if (it == 0) return true // returns from hasZeros
 }
 return false
}

Note that some inline functions may call the lambdas passed to them as parameters not directly from the function body, but
from another execution context, such as a local object or a nested function. In such cases, non-local control flow is also not
allowed in the lambdas. To indicate that, the lambda parameter needs to be marked with the crossinline modifier:

inline fun f(crossinline body: () -> Unit) {
 val f = object: Runnable {
 override fun run() = body()
 }
 // ...
}

break and continue are not yet available in inlined lambdas, but we are planning to support them too.

Sometimes we need to access a type passed to us as a parameter:

fun <T> TreeNode.findParentOfType(clazz: Class<T>): T? {
 var p = parent
 while (p != null && !clazz.isInstance(p)) {
 p = p.parent
 }
 @Suppress("UNCHECKED_CAST")
 return p as T?
}

Here, we walk up a tree and use reflection to check if a node has a certain type. It’s all fine, but the call site is not very pretty:

treeNode.findParentOfType(MyTreeNode::class.java)

What we actually want is simply pass a type to this function, i.e. call it like this:

treeNode.findParentOfType<MyTreeNode>()

To enable this, inline functions support reified type parameters, so we can write something like this:

Rei5ed type parameters

117

inline fun <reified T> TreeNode.findParentOfType(): T? {
 var p = parent
 while (p != null && p !is T) {
 p = p.parent
 }
 return p as T?
}

We qualified the type parameter with the reified modifier, now it’s accessible inside the function, almost as if it were a normal
class. Since the function is inlined, no reflection is needed, normal operators like !is and as are working now. Also, we can
call it as mentioned above: myTree.findParentOfType<MyTreeNodeType>() .

Though reflection may not be needed in many cases, we can still use it with a reified type parameter:

inline fun <reified T> membersOf() = T::class.members

fun main(s: Array<String>) {
 println(membersOf<StringBuilder>().joinToString("\n"))
}

Normal functions (not marked as inline) can not have reified parameters. A type that does not have a run-time representation
(e.g. a non-reified type parameter or a fictitious type like Nothing) can not be used as an argument for a reified type parameter.

For a low-level description, see the spec document.

The inline modifier can be used on accessors of properties that don't have a backing field. You can annotate individual
property accessors:

val foo: Foo
 inline get() = Foo()

var bar: Bar
 get() = ...
 inline set(v) { ... }

You can also annotate an entire property, which marks both of its accessors as inline:

inline var bar: Bar
 get() = ...
 set(v) { ... }

At the call site, inline accessors are inlined as regular inline functions.

When an inline function is public or protected and is not a part of a private or internal declaration, it is considered a
module's public API. It can be called in other modules and is inlined at such call sites as well.

This imposes certain risks of binary incompatibility caused by changes in the module that declares an inline function in case the
calling module is not re-compiled after the change.

To eliminate the risk of such incompatibility being introduced by a change in non-public API of a module, the public API inline
functions are not allowed to use non-public-API declarations, i.e. private and internal declarations and their parts, in their
bodies.

An internal declaration can be annotated with @PublishedApi , which allows its use in public API inline functions. When an
internal inline function is marked as @PublishedApi , its body is checked too, as if it were public.

Inline properties (since 1.1)

Restrictions for public API inline functions

118

https://github.com/JetBrains/kotlin/blob/master/spec-docs/reified-type-parameters.md

Coroutines are experimental in Kotlin 1.1+. See details below

Some APIs initiate long-running operations (such as network IO, file IO, CPU- or GPU-intensive work, etc) and require the caller to
block until they complete. Coroutines provide a way to avoid blocking a thread and replace it with a cheaper and more
controllable operation: suspension of a coroutine.

Coroutines simplify asynchronous programming by putting the complications into libraries. The logic of the program can be
expressed sequentially in a coroutine, and the underlying library will figure out the asynchrony for us. The library can wrap
relevant parts of the user code into callbacks, subscribe to relevant events, schedule execution on different threads (or even
different machines!), and the code remains as simple as if it was sequentially executed.

Many asynchronous mechanisms available in other languages can be implemented as libraries using Kotlin coroutines. This
includes async/await from C# and ECMAScript, channels and select from Go, and generators/yield from C# and Python. See
the description below for libraries providing such constructs.

Basically, coroutines are computations that can be suspended without blocking a thread. Blocking threads is often expensive,
especially under high load, because only a relatively small number of threads is practical to keep around, so blocking one of
them leads to some important work being delayed.

Coroutine suspension is almost free, on the other hand. No context switch or any other involvement of the OS is required. And
on top of that, suspension can be controlled by a user library to a large extent: as library authors, we can decide what happens
upon a suspension and optimize/log/intercept according to our needs.

Another difference is that coroutines can not be suspended at random instructions, but rather only at so called suspension
points, which are calls to specially marked functions.

A suspension happens when we call a function marked with the special modifier, suspend :

suspend fun doSomething(foo: Foo): Bar {
 ...
}

Such functions are called suspending functions, because calls to them may suspend a coroutine (the library can decide to
proceed without suspension, if the result for the call in question is already available). Suspending functions can take parameters
and return values in the same manner as regular functions, but they can only be called from coroutines and other suspending
functions, as well as function literals inlined into those.

In fact, to start a coroutine, there must be at least one suspending function, and it is usually a suspending lambda. Let's look at
an example, a simplified async() function (from the kotlinx.coroutines library):

fun <T> async(block: suspend () -> T)

Here, async() is a regular function (not a suspending function), but the block parameter has a function type with the
suspend modifier: suspend () -> T . So, when we pass a lambda to async() , it is a suspending lambda, and we can call a
suspending function from it:

async {
 doSomething(foo)
 ...
}

Note: currently, suspending function types cannot be used as supertypes, and anonymous suspending functions are
currently not supported.

Coroutines

Blocking vs Suspending

Suspending functions

119

https://github.com/Kotlin/kotlinx.coroutines/blob/master/coroutines-guide.md#composing-suspending-functions
https://github.com/Kotlin/kotlinx.coroutines/blob/master/coroutines-guide.md#channels
https://github.com/Kotlin/kotlinx.coroutines/blob/master/coroutines-guide.md#select-expression

To continue the analogy, await() can be a suspending function (hence also callable from within an async {} block) that
suspends a coroutine until some computation is done and returns its result:

async {
 ...
 val result = computation.await()
 ...
}

More information on how actual async/await functions work in kotlinx.coroutines can be found here.

Note that suspending functions await() and doSomething() cannot be called from function literals that are not inlined into a
suspending function body and from regular function like main() :

fun main(args: Array<String>) {
 doSomething() // ERROR: Suspending function called from a non-coroutine context

 async {
 ...
 computations.forEach { // `forEach` is an inline function, the lambda is inlined
 it.await() // OK
 }

 thread { // `thread` is not an inline function, so the lambda is not inlined
 doSomething() // ERROR
 }
 }
}

Also note that suspending functions can be virtual, and when overriding them, the suspend modifier has to be specified:

interface Base {
 suspend fun foo()
}

class Derived: Base {
 override suspend fun foo() { ... }
}

Extension functions (and lambdas) can also be marked suspend , just like regular ones. This enables creation of DSLs and other
APIs that users can extend. In some cases the library author needs to prevent the user from adding new ways of suspending a
coroutine.

To achieve this, the @RestrictsSuspension annotation may be used. When a receiver class or interface R is annotated with it,
all suspending extensions are required to delegate to either members of R or other extensions to it. Since extensions can't
delegate to each other indefinitely (the program would not terminate), this guarantees that all suspensions happen through
calling members of R that the author of the library can fully control.

This is relevant in the rare cases when every suspension is handled in a special way in the library. For example, when
implementing generators through the buildSequence() function described below, we need to make sure that any suspending
call in the coroutine ends up calling either yield() or yieldAll() and not any other function. This is why SequenceBuilder is
annotated with @RestrictsSuspension :

@RestrictsSuspension
public abstract class SequenceBuilder<in T> {
 ...
}

See the sources on Github.

@RestrictsSuspension annotation

120

https://github.com/Kotlin/kotlinx.coroutines/blob/master/coroutines-guide.md#composing-suspending-functions
https://github.com/JetBrains/kotlin/blob/master/libraries/stdlib/src/kotlin/coroutines/experimental/SequenceBuilder.kt

We are not trying here to give a complete explanation of how coroutines work under the hood, but a rough sense of what's
going on is rather important.

Coroutines are completely implemented through a compilation technique (no support from the VM or OS side is required), and
suspension works through code transformation. Basically, every suspending function (optimizations may apply, but we'll not go
into this here) is transformed to a state machine where states correspond to suspending calls. Right before a suspension, the
next state is stored in a field of a compiler-generated class along with relevant local variables, etc. Upon resumption of that
coroutine, local variables are restored and the state machine proceeds from the state right after suspension.

A suspended coroutine can be stored and passed around as an object that keeps its suspended state and locals. The type of
such objects is Continuation , and the overall code transformation described here corresponds to the classical Continuation-
passing style. Consequently, suspending functions take an extra parameter of type Continuation under the hood.

More details on how coroutines work may be found in this design document. Similar descriptions of async/await in other
languages (such as C# or ECMAScript 2016) are relevant here, although the language features they implement may not be as
general as Kotlin coroutines.

The design of coroutines is experimental, which means that it will be changed in the upcoming releases. When compiling
coroutines in Kotlin 1.1+, a warning is reported by default: The feature "coroutines" is experimental. To remove the warning, you
need to specify an opt-in flag.

Due to its experimental status, the coroutine-related API in the Standard Library is put under the
kotlin.coroutines.experimental package. When the design is finalized and the experimental status lifted, the final API will
be moved to kotlin.coroutines , and the experimental package will be kept around (probably in a separate artifact) for
backward compatibility.

IMPORTANT NOTE: We advise library authors to follow the same convention: add the "experimental" (e.g.
com.example.experimental) suffix to your packages exposing coroutine-based APIs so that your library remains binary
compatible. When the final API is released, follow these steps:

copy all the APIs to com.example (without the experimental suffix),

keep the experimental package around for backward compatibility.

This will minimize migration issues for your users.

Coroutines come in three main ingredients:

language support (i.s. suspending functions, as described above);
low-level core API in the Kotlin Standard Library;
high-level APIs that can be used directly in the user code.

Low-level API is relatively small and should never be used other than for creating higher-level libraries. It consists of two main
packages:

kotlin.coroutines.experimental with main types and primitives such as:

createCoroutine(),

startCoroutine(),

suspendCoroutine();

kotlin.coroutines.experimental.intrinsics with even lower-level intrinsics such as suspendCoroutineOrReturn.

More details about the usage of these APIs can be found here.

The inner workings of coroutines

Experimental status of coroutines

—

—

Standard APIs

—
—
—

Low-level API: kotlin.coroutines

—

—

—

—

—

Generators API in kotlin.coroutines

121

https://en.wikipedia.org/wiki/Continuation-passing_style
https://github.com/Kotlin/kotlin-coroutines/blob/master/kotlin-coroutines-informal.md
https://github.com/Kotlin/kotlin-coroutines/blob/master/kotlin-coroutines-informal.md

The only "application-level" functions in kotlin.coroutines.experimental are

buildSequence()

buildIterator()

These are shipped within kotlin-stdlib because they are related to sequences. In fact, these functions (and we can limit
ourselves to buildSequence() alone here) implement generators, i.e. provide a way to cheaply build a lazy sequence:

 val fibonacciSeq = buildSequence {
 var a = 0
 var b = 1

 yield(1)

 while (true) {
 yield(a + b)

 val tmp = a + b
 a = b
 b = tmp
 }
 }

This generates a lazy, potentially infinite Fibonacci sequence by creating a coroutine that yields consecutive Fibonacci numbers
by calling the yield() function. When iterating over such a sequence every step of the iterator executes another portion of the
coroutine that generates the next number. So, we can take any finite list of numbers out of this sequence, e.g.
fibonacciSeq.take(8).toList() results in [1, 1, 2, 3, 5, 8, 13, 21] . And coroutines are cheap enough to make this
practical.

To demonstrate the real laziness of such a sequence, let's print some debug output inside a call to buildSequence() :

 val lazySeq = buildSequence {
 print("START ")
 for (i in 1..5) {
 yield(i)
 print("STEP ")
 }
 print("END")
 }

 // Print the first three elements of the sequence
 lazySeq.take(3).forEach { print("$it ") }

Running the code above prints the first three elements. The numbers are interleaved with STEP s in the generating loop. This
means that the computation is lazy indeed. To print 1 we only execute until the first yield(i) , and print START along the way.
Then, to print 2 we need to proceed to the next yield(i) , and this prints STEP . Same for 3 . And the next STEP never gets
printed (as well as END), because we never requested further elements of the sequence.

To yield a collection (or sequence) of values at once, the yieldAll() function is available:

 val lazySeq = buildSequence {
 yield(0)
 yieldAll(1..10)
 }

 lazySeq.forEach { print("$it ") }

The buildIterator() works similarly to buildSequence() , but returns a lazy iterator.

One can add custom yielding logic to buildSequence() by writing suspending extensions to the SequenceBuilder class (that
bears the @RestrictsSuspension annotation described above):

—

—

122

suspend fun SequenceBuilder<Int>.yieldIfOdd(x: Int) {
 if (x % 2 != 0) yield(x)
}

val lazySeq = buildSequence {
 for (i in 1..10) yieldIfOdd(i)
}

Only core APIs related to coroutines are available from the Kotlin Standard Library. This mostly consists of core primitives and
interfaces that all coroutine-based libraries are likely to use.

Most application-level APIs based on coroutines are released as a separate library: kotlinx.coroutines. This library covers

Platform-agnostic asynchronous programming with kotlinx-coroutines-core :

this module includes Go-like channels that support select and other convenient primitives,

a comprehensive guide to this library is available here;

APIs based on CompletableFuture from JDK 8: kotlinx-coroutines-jdk8 ;

Non-blocking IO (NIO) based on APIs from JDK 7 and higher: kotlinx-coroutines-nio ;

Support for Swing (kotlinx-coroutines-swing) and JavaFx (kotlinx-coroutines-javafx);

Support for RxJava: kotlinx-coroutines-rx .

These libraries serve as both convenient APIs that make common tasks easy and end-to-end examples of how to build
coroutine-based libraries.

Other high-level APIs: kotlinx.coroutines

—

—

—

—

—

—

—

123

https://github.com/Kotlin/kotlinx.coroutines
https://github.com/Kotlin/kotlinx.coroutines/blob/master/coroutines-guide.md

Other

Sometimes it is convenient to destructure an object into a number of variables, for example:

val (name, age) = person

This syntax is called a destructuring declaration. A destructuring declaration creates multiple variables at once. We have
declared two new variables: name and age , and can use them independently:

println(name)
println(age)

A destructuring declaration is compiled down to the following code:

val name = person.component1()
val age = person.component2()

The component1() and component2() functions are another example of the principle of conventions widely used in Kotlin (see
operators like + and * , for-loops etc.). Anything can be on the right-hand side of a destructuring declaration, as long as the
required number of component functions can be called on it. And, of course, there can be component3() and component4()
and so on.

Note that the componentN() functions need to be marked with the operator keyword to allow using them in a destructuring
declaration.

Destructuring declarations also work in for-loops: when you say:

for ((a, b) in collection) { ... }

Variables a and b get the values returned by component1() and component2() called on elements of the collection.

Let's say we need to return two things from a function. For example, a result object and a status of some sort. A compact way of
doing this in Kotlin is to declare a data class and return its instance:

data class Result(val result: Int, val status: Status)
fun function(...): Result {
 // computations

 return Result(result, status)
}

// Now, to use this function:
val (result, status) = function(...)

Since data classes automatically declare componentN() functions, destructuring declarations work here.

NOTE: we could also use the standard class Pair and have function() return Pair<Int, Status> , but it's often better to
have your data named properly.

Destructuring Declarations

Example: Returning Two Values from a Function

124

Probably the nicest way to traverse a map is this:

for ((key, value) in map) {
 // do something with the key and the value
}

To make this work, we should

present the map as a sequence of values by providing an iterator() function;

present each of the elements as a pair by providing functions component1() and component2() .

And indeed, the standard library provides such extensions:

operator fun <K, V> Map<K, V>.iterator(): Iterator<Map.Entry<K, V>> = entrySet().iterator()
operator fun <K, V> Map.Entry<K, V>.component1() = getKey()
operator fun <K, V> Map.Entry<K, V>.component2() = getValue()

So you can freely use destructuring declarations in for-loops with maps (as well as collections of data class instances etc).

If you don't need a variable in the destructuring declaration, you can place an underscore instead of its name:

val (_, status) = getResult()

The componentN() operator functions are not called for the components that are skipped in this way.

You can use the destructuring declarations syntax for lambda parameters. If a lambda has a parameter of the Pair type (or
Map.Entry , or any other type that has the appropriate componentN functions), you can introduce several new parameters
instead of one by putting them in parentheses:

map.mapValues { entry -> "${entry.value}!" }
map.mapValues { (key, value) -> "$value!" }

Note the difference between declaring two parameters and declaring a destructuring pair instead of a parameter:

{ a -> ... } // one parameter
{ a, b -> ... } // two parameters
{ (a, b) -> ... } // a destructured pair
{ (a, b), c -> ... } // a destructured pair and another parameter

If a component of the destructured parameter is unused, you can replace it with the underscore to avoid inventing its name:

map.mapValues { (_, value) -> "$value!" }

You can specify the type for the whole destructured parameter or for a specific component separately:

map.mapValues { (_, value): Map.Entry<Int, String> -> "$value!" }

map.mapValues { (_, value: String) -> "$value!" }

Example: Destructuring Declarations and Maps

—

—

Underscore for unused variables (since 1.1)

Destructuring in Lambdas (since 1.1)

125

Unlike many languages, Kotlin distinguishes between mutable and immutable collections (lists, sets, maps, etc). Precise control
over exactly when collections can be edited is useful for eliminating bugs, and for designing good APIs.

It is important to understand up front the difference between a read-only view of a mutable collection, and an actually immutable
collection. Both are easy to create, but the type system doesn't express the difference, so keeping track of that (if it's relevant)
is up to you.

The Kotlin List<out T> type is an interface that provides read-only operations like size , get and so on. Like in Java, it inherits
from Collection<T> and that in turn inherits from Iterable<T> . Methods that change the list are added by the
MutableList<T> interface. This pattern holds also for Set<out T>/MutableSet<T> and Map<K, out V>/MutableMap<K, V> .

We can see basic usage of the list and set types below:

val numbers: MutableList<Int> = mutableListOf(1, 2, 3)
val readOnlyView: List<Int> = numbers
println(numbers) // prints "[1, 2, 3]"
numbers.add(4)
println(readOnlyView) // prints "[1, 2, 3, 4]"
readOnlyView.clear() // -> does not compile

val strings = hashSetOf("a", "b", "c", "c")
assert(strings.size == 3)

Kotlin does not have dedicated syntax constructs for creating lists or sets. Use methods from the standard library, such as
listOf() , mutableListOf() , setOf() , mutableSetOf() . Map creation in NOT performance-critical code can be
accomplished with a simple idiom: mapOf(a to b, c to d) .

Note that the readOnlyView variable points to the same list and changes as the underlying list changes. If the only references
that exist to a list are of the read-only variety, we can consider the collection fully immutable. A simple way to create such a
collection is like this:

val items = listOf(1, 2, 3)

Currently, the listOf method is implemented using an array list, but in future more memory-efficient fully immutable collection
types could be returned that exploit the fact that they know they can't change.

Note that the read-only types are covariant. That means, you can take a List<Rectangle> and assign it to List<Shape>
assuming Rectangle inherits from Shape. This wouldn't be allowed with the mutable collection types because it would allow for
failures at runtime.

Sometimes you want to return to the caller a snapshot of a collection at a particular point in time, one that's guaranteed to not
change:

class Controller {
 private val _items = mutableListOf<String>()
 val items: List<String> get() = _items.toList()
}

The toList extension method just duplicates the lists items, thus, the returned list is guaranteed to never change.

There are various useful extension methods on lists and sets that are worth being familiar with:

Collections: List, Set, Map

126

val items = listOf(1, 2, 3, 4)
items.first() == 1
items.last() == 4
items.filter { it % 2 == 0 } // returns [2, 4]

val rwList = mutableListOf(1, 2, 3)
rwList.requireNoNulls() // returns [1, 2, 3]
if (rwList.none { it > 6 }) println("No items above 6") // prints "No items above 6"
val item = rwList.firstOrNull()

… as well as all the utilities you would expect such as sort, zip, fold, reduce and so on.

Maps follow the same pattern. They can be easily instantiated and accessed like this:

val readWriteMap = hashMapOf("foo" to 1, "bar" to 2)
println(readWriteMap["foo"]) // prints "1"
val snapshot: Map<String, Int> = HashMap(readWriteMap)

127

Range expressions are formed with rangeTo functions that have the operator form .. which is complemented by in and !in.
Range is defined for any comparable type, but for integral primitive types it has an optimized implementation. Here are some
examples of using ranges:

if (i in 1..10) { // equivalent of 1 <= i && i <= 10
 println(i)
}

Integral type ranges (IntRange , LongRange , CharRange) have an extra feature: they can be iterated over. The compiler takes
care of converting this analogously to Java's indexed for-loop, without extra overhead:

for (i in 1..4) print(i) // prints "1234"

for (i in 4..1) print(i) // prints nothing

What if you want to iterate over numbers in reverse order? It's simple. You can use the downTo() function defined in the
standard library:

for (i in 4 downTo 1) print(i) // prints "4321"

Is it possible to iterate over numbers with arbitrary step, not equal to 1? Sure, the step() function will help you:

for (i in 1..4 step 2) print(i) // prints "13"

for (i in 4 downTo 1 step 2) print(i) // prints "42"

To create a range which does not include its end element, you can use the until function:

for (i in 1 until 10) { // i in [1, 10), 10 is excluded
 println(i)
}

Ranges implement a common interface in the library: ClosedRange<T> .

ClosedRange<T> denotes a closed interval in the mathematical sense, defined for comparable types. It has two endpoints:
start and endInclusive , which are included in the range. The main operation is contains , usually used in the form of in/!in
operators.

Integral type progressions (IntProgression , LongProgression , CharProgression) denote an arithmetic progression.
Progressions are defined by the first element, the last element and a non-zero step . The first element is first ,
subsequent elements are the previous element plus step . The last element is always hit by iteration unless the progression
is empty.

A progression is a subtype of Iterable<N> , where N is Int , Long or Char respectively, so it can be used in for-loops and
functions like map , filter , etc. Iteration over Progression is equivalent to an indexed for-loop in Java/JavaScript:

for (int i = first; i != last; i += step) {
 // ...
}

For integral types, the .. operator creates an object which implements both ClosedRange<T> and *Progression . For
example, IntRange implements ClosedRange<Int> and extends IntProgression , thus all operations defined for
IntProgression are available for IntRange as well. The result of the downTo() and step() functions is always a
*Progression .

Ranges

How it works

128

Progressions are constructed with the fromClosedRange function defined in their companion objects:

IntProgression.fromClosedRange(start, end, step)

The last element of the progression is calculated to find maximum value not greater than the end value for positive step or
minimum value not less than the end value for negative step such that (last - first) % step == 0 .

The rangeTo() operators on integral types simply call the constructors of *Range classes, e.g.:

class Int {
 //...
 operator fun rangeTo(other: Long): LongRange = LongRange(this, other)
 //...
 operator fun rangeTo(other: Int): IntRange = IntRange(this, other)
 //...
}

Floating point numbers (Double , Float) do not define their rangeTo operator, and the one provided by the standard library
for generic Comparable types is used instead:

 public operator fun <T: Comparable<T>> T.rangeTo(that: T): ClosedRange<T>

The range returned by this function cannot be used for iteration.

The downTo() extension function is defined for any pair of integral types, here are two examples:

fun Long.downTo(other: Int): LongProgression {
 return LongProgression.fromClosedRange(this, other.toLong(), -1L)
}

fun Byte.downTo(other: Int): IntProgression {
 return IntProgression.fromClosedRange(this.toInt(), other, -1)
}

The reversed() extension functions are defined for each *Progression classes, and all of them return reversed
progressions:

fun IntProgression.reversed(): IntProgression {
 return IntProgression.fromClosedRange(last, first, -step)
}

step() extension functions are defined for *Progression classes, all of them return progressions with modified step values
(function parameter). The step value is required to be always positive, therefore this function never changes the direction of
iteration:

Utility functions

rangeTo()

downTo()

reversed()

step()

129

fun IntProgression.step(step: Int): IntProgression {
 if (step <= 0) throw IllegalArgumentException("Step must be positive, was: $step")
 return IntProgression.fromClosedRange(first, last, if (this.step > 0) step else -step)
}

fun CharProgression.step(step: Int): CharProgression {
 if (step <= 0) throw IllegalArgumentException("Step must be positive, was: $step")
 return CharProgression.fromClosedRange(first, last, if (this.step > 0) step else -step)
}

Note that the last value of the returned progression may become different from the last value of the original progression in
order to preserve the invariant (last - first) % step == 0 . Here is an example:

(1..12 step 2).last == 11 // progression with values [1, 3, 5, 7, 9, 11]
(1..12 step 3).last == 10 // progression with values [1, 4, 7, 10]
(1..12 step 4).last == 9 // progression with values [1, 5, 9]

130

We can check whether an object conforms to a given type at runtime by using the is operator or its negated form !is :

if (obj is String) {
 print(obj.length)
}

if (obj !is String) { // same as !(obj is String)
 print("Not a String")
}
else {
 print(obj.length)
}

In many cases, one does not need to use explicit cast operators in Kotlin, because the compiler tracks the is -checks and
explicit casts for immutable values and inserts (safe) casts automatically when needed:

fun demo(x: Any) {
 if (x is String) {
 print(x.length) // x is automatically cast to String
 }
}

The compiler is smart enough to know a cast to be safe if a negative check leads to a return:

 if (x !is String) return
 print(x.length) // x is automatically cast to String

or in the right-hand side of && and || :

 // x is automatically cast to string on the right-hand side of `||`
 if (x !is String || x.length == 0) return

 // x is automatically cast to string on the right-hand side of `&&`
 if (x is String && x.length > 0) {
 print(x.length) // x is automatically cast to String
 }

Such smart casts work for when-expressions and while-loops as well:

when (x) {
 is Int -> print(x + 1)
 is String -> print(x.length + 1)
 is IntArray -> print(x.sum())
}

Note that smart casts do not work when the compiler cannot guarantee that the variable cannot change between the check
and the usage. More specifically, smart casts are applicable according to the following rules:

val local variables - always except for local delegated properties;

val properties - if the property is private or internal or the check is performed in the same module where the property is
declared. Smart casts aren't applicable to open properties or properties that have custom getters;
var local variables - if the variable is not modified between the check and the usage, is not captured in a lambda that
modifies it, and is not a local delegated property;

Type Checks and Casts: 'is' and 'as'

is and !is Operators

Smart Casts

—

—

—

131

var properties - never (because the variable can be modified at any time by other code).

Usually, the cast operator throws an exception if the cast is not possible. Thus, we call it unsafe. The unsafe cast in Kotlin is
done by the infix operator as (see operator precedence):

val x: String = y as String

Note that null cannot be cast to String as this type is not nullable, i.e. if y is null, the code above throws an exception. In
order to match Java cast semantics we have to have nullable type at cast right hand side, like:

val x: String? = y as String?

To avoid an exception being thrown, one can use a safe cast operator as? that returns null on failure:

val x: String? = y as? String

Note that despite the fact that the right-hand side of as? is a non-null type String the result of the cast is nullable.

Kotlin ensures type safety of operations involving generics at compile time, while, at runtime, instances of generic types hold no
information about their actual type arguments. For example, List<Foo> is erased to just List<*> . In general, there is no way to
check whether an instance belongs to a generic type with certain type arguments at runtime.

Given that, the compiler prohibits is-checks that cannot be performed at runtime due to type erasure, such as ints is
List<Int> or list is T (type parameter). You can, however, check an instance against a star-projected type:

if (something is List<*>) {
 something.forEach { println(it) } // The items are typed as `Any?`
}

Similarly, when you already have the type arguments of an instance checked statically (at compile time), you can make an is-
check or a cast that involves the non-generic part of the type. Note that angle brackets are omitted in this case:

fun handleStrings(list: List<String>) {
 if (list is ArrayList) {
 // `list` is smart-cast to `ArrayList<String>`
 }
}

The same syntax with omitted type arguments can be used for casts that do not take type arguments into account: list as
ArrayList .

Inline functions with reified type parameters have their actual type arguments inlined at each call site, which enables arg is T
checks for the type parameters, but if arg is an instance of a generic type itself, its type arguments are still erased. Example:

—

"Unsafe" cast operator

"Safe" (nullable) cast operator

Type erasure and generic type checks

132

inline fun <reified A, reified B> Pair<*, *>.asPairOf(): Pair<A, B>? {
 if (first !is A || second !is B) return null
 return first as A to second as B
}

val somePair: Pair<Any?, Any?> = "items" to listOf(1, 2, 3)

val stringToSomething = somePair.asPairOf<String, Any>()
val stringToInt = somePair.asPairOf<String, Int>()
val stringToList = somePair.asPairOf<String, List<*>>()
val stringToStringList = somePair.asPairOf<String, List<String>>() // Breaks type safety!

As said above, type erasure makes checking actual type arguments of a generic type instance impossible at runtime, and
generic types in the code might be connected to each other not closely enough for the compiler to ensure type safety.

Even so, sometimes we have high-level program logic that implies type safety instead. For example:

fun readDictionary(file: File): Map<String, *> = file.inputStream().use {
 TODO("Read a mapping of strings to arbitrary elements.")
}

// We saved a map with `Int`s into that file
val intsFile = File("ints.dictionary")

// Warning: Unchecked cast: `Map<String, *>` to `Map<String, Int>`
val intsDictionary: Map<String, Int> = readDictionary(intsFile) as Map<String, Int>

The compiler produces a warning for the cast in the last line. The cast cannot be fully checked at runtime and provides no
guarantee that the values in the map are Int .

To avoid unchecked casts, you can redesign the program structure: in the example above, there could be interfaces
DictionaryReader<T> and DictionaryWriter<T> with type-safe implementations for different types. You can introduce
reasonable abstractions to move unchecked casts from calling code to the implementation details. Proper use of generic
variance can also help.

For generic functions, using reified type parameters makes the casts such as arg as T checked, unless arg 's type has its
own type arguments that are erased.

An unchecked cast warning can be suppressed by annotating the statement or the declaration where it occurs with
@Suppress("UNCHECKED_CAST") :

inline fun <reified T> List<*>.asListOfType(): List<T>? =
 if (all { it is T })
 @Suppress("UNCHECKED_CAST")
 this as List<T> else
 null

On the JVM, the array types (Array<Foo>) retain the information about the erased type of their elements, and the type casts to
an array type are partially checked: the nullability and actual type arguments of the elements type are still erased. For example,
the cast foo as Array<List<String>?> will succeed if foo is an array holding any List<*> , nullable or not.

Unchecked casts

133

To denote the current receiver, we use this expressions:

In a member of a class, this refers to the current object of that class.

In an extension function or a function literal with receiver this denotes the receiver parameter that is passed on the left-
hand side of a dot.

If this has no qualifiers, it refers to the innermost enclosing scope. To refer to this in other scopes, label qualifiers are used:

To access this from an outer scope (a class, or extension function, or labeled function literal with receiver) we write
this@label where @label is a label on the scope this is meant to be from:

class A { // implicit label @A
 inner class B { // implicit label @B
 fun Int.foo() { // implicit label @foo
 val a = this@A // A's this
 val b = this@B // B's this

 val c = this // foo()'s receiver, an Int
 val c1 = this@foo // foo()'s receiver, an Int

 val funLit = lambda@ fun String.() {
 val d = this // funLit's receiver
 }

 val funLit2 = { s: String ->
 // foo()'s receiver, since enclosing lambda expression
 // doesn't have any receiver
 val d1 = this
 }
 }
 }
}

This Expression

—

—

Quali5ed this

134

In Kotlin there are two types of equality:

Structural equality (a check for equals()).

Referential equality (two references point to the same object);

Structural equality is checked by the == operation (and its negated counterpart !=). By convention, an expression like a == b
is translated to:

a?.equals(b) ?: (b === null)

I.e. if a is not null , it calls the equals(Any?) function, otherwise (i.e. a is null) it checks that b is referentially equal to
null .

Note that there's no point in optimizing your code when comparing to null explicitly: a == null will be automatically
translated to a === null .

When an equality check operands are statically known to be Float or Double (nullable or not), the check follows the IEEE 754
Standard for Floating-Point Arithmetic.

Otherwise, the structural equality is used, which disagrees with the standard so that NaN is equal to itself, and -0.0 is not
equal to 0.0 .

See: Floating Point Numbers Comparison.

Referential equality is checked by the === operation (and its negated counterpart !==). a === b evaluates to true if and only if
a and b point to the same object. For values which are represented as primitive types at runtime (for example, Int), the ===
equality check is equivalent to the == check.

Equality

—

—

Structural equality

Floating point numbers equality

Referential equality

135

Kotlin allows us to provide implementations for a predefined set of operators on our types. These operators have fixed symbolic
representation (like + or *) and fixed precedence. To implement an operator, we provide a member function or an extension
function with a fixed name, for the corresponding type, i.e. left-hand side type for binary operations and argument type for unary
ones. Functions that overload operators need to be marked with the operator modifier.

Further we describe the conventions that regulate operator overloading for different operators.

Expression Translated to
+a a.unaryPlus()

-a a.unaryMinus()

!a a.not()

This table says that when the compiler processes, for example, an expression +a , it performs the following steps:

Determines the type of a , let it be T ;

Looks up a function unaryPlus() with the operator modifier and no parameters for the receiver T , i.e. a member
function or an extension function;
If the function is absent or ambiguous, it is a compilation error;
If the function is present and its return type is R , the expression +a has type R ;

Note that these operations, as well as all the others, are optimized for Basic types and do not introduce overhead of function
calls for them.

As an example, here's how you can overload the unary minus operator:

data class Point(val x: Int, val y: Int)

operator fun Point.unaryMinus() = Point(-x, -y)

val point = Point(10, 20)
println(-point) // prints "(-10, -20)"

Expression Translated to
a++ a.inc() + see below
a-- a.dec() + see below

The inc() and dec() functions must return a value, which will be assigned to the variable on which the ++ or -- operation
was used. They shouldn't mutate the object on which the inc or dec was invoked.

The compiler performs the following steps for resolution of an operator in the postfix form, e.g. a++ :

Determines the type of a , let it be T ;

Looks up a function inc() with the operator modifier and no parameters, applicable to the receiver of type T ;

Checks that the return type of the function is a subtype of T .

The effect of computing the expression is:

Store the initial value of a to a temporary storage a0 ;

Assign the result of a.inc() to a ;

Return a0 as a result of the expression.

Operator overloading

Unary operations

Unary pre1x operators

—

—

—
—

Increments and decrements

—

—

—

—

—

—

136

For a-- the steps are completely analogous.

For the prefix forms ++a and --a resolution works the same way, and the effect is:

Assign the result of a.inc() to a ;

Return the new value of a as a result of the expression.

Expression Translated to
a + b a.plus(b)

a - b a.minus(b)

a * b a.times(b)

a / b a.div(b)

a % b a.rem(b), a.mod(b) (deprecated)
a..b a.rangeTo(b)

For the operations in this table, the compiler just resolves the expression in the Translated to column.

Note that the rem operator is supported since Kotlin 1.1. Kotlin 1.0 uses the mod operator, which is deprecated in Kotlin 1.1.

Below is an example Counter class that starts at a given value and can be incremented using the overloaded + operator:

data class Counter(val dayIndex: Int) {
 operator fun plus(increment: Int): Counter {
 return Counter(dayIndex + increment)
 }
}

Expression Translated to
a in b b.contains(a)

a !in b !b.contains(a)

For in and !in the procedure is the same, but the order of arguments is reversed.

Expression Translated to
a[i] a.get(i)

a[i, j] a.get(i, j)

a[i_1, ..., i_n] a.get(i_1, ..., i_n)

a[i] = b a.set(i, b)

a[i, j] = b a.set(i, j, b)

a[i_1, ..., i_n] = b a.set(i_1, ..., i_n, b)

Square brackets are translated to calls to get and set with appropriate numbers of arguments.

Expression Translated to

—

—

Binary operations

Arithmetic operators

Example

'In' operator

Indexed access operator

Invoke operator

137

a() a.invoke()
a(i) a.invoke(i)

a(i, j) a.invoke(i, j)

a(i_1, ..., i_n) a.invoke(i_1, ..., i_n)

Expression Translated to

Parentheses are translated to calls to invoke with appropriate number of arguments.

Expression Translated to
a += b a.plusAssign(b)

a -= b a.minusAssign(b)

a *= b a.timesAssign(b)

a /= b a.divAssign(b)

a %= b a.remAssign(b), a.modAssign(b) (deprecated)

For the assignment operations, e.g. a += b , the compiler performs the following steps:

If the function from the right column is available
If the corresponding binary function (i.e. plus() for plusAssign()) is available too, report error (ambiguity),

Make sure its return type is Unit , and report an error otherwise,

Generate code for a.plusAssign(b) ;

Otherwise, try to generate code for a = a + b (this includes a type check: the type of a + b must be a subtype of a).

Note: assignments are NOT expressions in Kotlin.

Expression Translated to
a == b a?.equals(b) ?: (b === null)

a != b !(a?.equals(b) ?: (b === null))

Note: === and !== (identity checks) are not overloadable, so no conventions exist for them.

The == operation is special: it is translated to a complex expression that screens for null 's. null == null is always true, and
x == null for a non-null x is always false and won't invoke x.equals() .

Expression Translated to
a > b a.compareTo(b) > 0

a < b a.compareTo(b) < 0

a >= b a.compareTo(b) >= 0

a <= b a.compareTo(b) <= 0

All comparisons are translated into calls to compareTo , that is required to return Int .

provideDelegate , getValue and setValue operator functions are described in Delegated properties.

We can simulate custom infix operations by using infix function calls.

Augmented assignments

—
—

—

—

—

Equality and inequality operators

Comparison operators

Property delegation operators

In5x calls for named functions

138

Kotlin's type system is aimed at eliminating the danger of null references from code, also known as the The Billion Dollar Mistake.

One of the most common pitfalls in many programming languages, including Java, is that accessing a member of a null reference
will result in a null reference exception. In Java this would be the equivalent of a NullPointerException or NPE for short.

Kotlin's type system is aimed to eliminate NullPointerException 's from our code. The only possible causes of NPE's may be:

An explicit call to throw NullPointerException() ;

Usage of the !! operator that is described below;

Some data inconsistency with regard to initialization, such as when:
An uninitialized this available in a constructor is passed and used somewhere ("leaking this");

A superclass constructor calls an open member whose implementation in the derived class uses uninitialized state;

Java interoperation:
Attempts to access a member on a null reference of a platform type;

Generic types used for Java interoperation with incorrect nullability, e.g. a piece of Java code might add null into a Kotlin
MutableList<String> , meaning that MutableList<String?> should be used for working with it;

Other issues caused by external Java code.

In Kotlin, the type system distinguishes between references that can hold null (nullable references) and those that can not
(non-null references). For example, a regular variable of type String can not hold null:

var a: String = "abc"
a = null // compilation error

To allow nulls, we can declare a variable as nullable string, written String? :

var b: String? = "abc"
b = null // ok

Now, if you call a method or access a property on a , it's guaranteed not to cause an NPE, so you can safely say:

val l = a.length

But if you want to access the same property on b , that would not be safe, and the compiler reports an error:

val l = b.length // error: variable 'b' can be null

But we still need to access that property, right? There are a few ways of doing that.

First, you can explicitly check if b is null, and handle the two options separately:

val l = if (b != null) b.length else -1

The compiler tracks the information about the check you performed, and allows the call to length inside the if. More complex
conditions are supported as well:

Null Safety

Nullable types and Non-Null Types

—

—

—
—

—

—
—

—

—

Checking for null in conditions

139

http://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions

if (b != null && b.length > 0) {
 print("String of length ${b.length}")
} else {
 print("Empty string")
}

Note that this only works where b is immutable (i.e. a local variable which is not modified between the check and the usage or
a member val which has a backing field and is not overridable), because otherwise it might happen that b changes to null
after the check.

Your second option is the safe call operator, written ?. :

b?.length

This returns b.length if b is not null, and null otherwise. The type of this expression is Int? .

Safe calls are useful in chains. For example, if Bob, an Employee, may be assigned to a Department (or not), that in turn may
have another Employee as a department head, then to obtain the name of Bob's department head (if any), we write the
following:

bob?.department?.head?.name

Such a chain returns null if any of the properties in it is null.

To perform a certain operation only for non-null values, you can use the safe call operator together with let:

val listWithNulls: List<String?> = listOf("A", null)
for (item in listWithNulls) {
 item?.let { println(it) } // prints A and ignores null
}

A safe call can also be placed on the left side of an assignment. Then, if one of the receivers in the safe calls chain is null, the
assignment is skipped, and the expression on the right is not evaluated at all:

// If either `person` or `person.department` is null, the function is not called:
person?.department?.head = managersPool.getManager()

When we have a nullable reference r , we can say "if r is not null, use it, otherwise use some non-null value x ":

val l: Int = if (b != null) b.length else -1

Along with the complete if-expression, this can be expressed with the Elvis operator, written ?: :

val l = b?.length ?: -1

If the expression to the left of ?: is not null, the elvis operator returns it, otherwise it returns the expression to the right. Note
that the right-hand side expression is evaluated only if the left-hand side is null.

Note that, since throw and return are expressions in Kotlin, they can also be used on the right hand side of the elvis operator.
This can be very handy, for example, for checking function arguments:

Safe Calls

Elvis Operator

140

fun foo(node: Node): String? {
 val parent = node.getParent() ?: return null
 val name = node.getName() ?: throw IllegalArgumentException("name expected")
 // ...
}

The third option is for NPE-lovers: the not-null assertion operator (!!) converts any value to a non-null type and throws an
exception if the value is null. We can write b!! , and this will return a non-null value of b (e.g., a String in our example) or
throw an NPE if b is null:

val l = b!!.length

Thus, if you want an NPE, you can have it, but you have to ask for it explicitly, and it does not appear out of the blue.

Regular casts may result into a ClassCastException if the object is not of the target type. Another option is to use safe casts
that return null if the attempt was not successful:

val aInt: Int? = a as? Int

If you have a collection of elements of a nullable type and want to filter non-null elements, you can do so by using
filterNotNull :

val nullableList: List<Int?> = listOf(1, 2, null, 4)
val intList: List<Int> = nullableList.filterNotNull()

The !! Operator

Safe Casts

Collections of Nullable Type

141

All exception classes in Kotlin are descendants of the class Throwable . Every exception has a message, stack trace and an
optional cause.

To throw an exception object, use the throw-expression:

throw MyException("Hi There!")

To catch an exception, use the try-expression:

try {
 // some code
}
catch (e: SomeException) {
 // handler
}
finally {
 // optional finally block
}

There may be zero or more catch blocks. finally blocks may be omitted. However at least one catch or finally block should
be present.

try is an expression, i.e. it may have a return value:

val a: Int? = try { parseInt(input) } catch (e: NumberFormatException) { null }

The returned value of a try-expression is either the last expression in the try block or the last expression in the catch block (or
blocks). Contents of the finally block do not affect the result of the expression.

Kotlin does not have checked exceptions. There are many reasons for this, but we will provide a simple example.

The following is an example interface of the JDK implemented by StringBuilder class:

Appendable append(CharSequence csq) throws IOException;

What does this signature say? It says that every time I append a string to something (a StringBuilder , some kind of a log, a
console, etc.) I have to catch those IOExceptions . Why? Because it might be performing IO (Writer also implements
Appendable)… So it results into this kind of code all over the place:

try {
 log.append(message)
}
catch (IOException e) {
 // Must be safe
}

And this is no good, see Effective Java, 3rd Edition, Item 77: Don't ignore exceptions.

Bruce Eckel says in Does Java need Checked Exceptions?:

Exceptions

Exception Classes

Try is an expression

Checked Exceptions

142

http://www.oracle.com/technetwork/java/effectivejava-136174.html
http://www.mindview.net/Etc/Discussions/CheckedExceptions

Examination of small programs leads to the conclusion that requiring exception specifications could both enhance
developer productivity and enhance code quality, but experience with large software projects suggests a different result –
decreased productivity and little or no increase in code quality.

Other citations of this sort:

Java's checked exceptions were a mistake (Rod Waldhoff)
The Trouble with Checked Exceptions (Anders Hejlsberg)

throw is an expression in Kotlin, so you can use it, for example, as part of an Elvis expression:

val s = person.name ?: throw IllegalArgumentException("Name required")

The type of the throw expression is the special type Nothing . The type has no values and is used to mark code locations that
can never be reached. In your own code, you can use Nothing to mark a function that never returns:

fun fail(message: String): Nothing {
 throw IllegalArgumentException(message)
}

When you call this function, the compiler will know that the execution doesn't continue beyond the call:

val s = person.name ?: fail("Name required")
println(s) // 's' is known to be initialized at this point

Another case where you may encounter this type is type inference. The nullable variant of this type, Nothing? , has exactly one
possible value, which is null . If you use null to initialize a value of an inferred type and there's no other information that can
be used to determine a more specific type, the compiler will infer the Nothing? type:

val x = null // 'x' has type `Nothing?`
val l = listOf(null) // 'l' has type `List<Nothing?>

Please see the section on exceptions in the Java Interoperability section for information about Java interoperability.

—
—

The Nothing type

Java Interoperability

143

http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
http://www.artima.com/intv/handcuffs.html

Annotations are means of attaching metadata to code. To declare an annotation, put the annotation modifier in front of a class:

annotation class Fancy

Additional attributes of the annotation can be specified by annotating the annotation class with meta-annotations:

@Target specifies the possible kinds of elements which can be annotated with the annotation (classes, functions,
properties, expressions etc.);
@Retention specifies whether the annotation is stored in the compiled class files and whether it's visible through reflection
at runtime (by default, both are true);
@Repeatable allows using the same annotation on a single element multiple times;

@MustBeDocumented specifies that the annotation is part of the public API and should be included in the class or method
signature shown in the generated API documentation.

@Target(AnnotationTarget.CLASS, AnnotationTarget.FUNCTION,
 AnnotationTarget.VALUE_PARAMETER, AnnotationTarget.EXPRESSION)
@Retention(AnnotationRetention.SOURCE)
@MustBeDocumented
annotation class Fancy

@Fancy class Foo {
 @Fancy fun baz(@Fancy foo: Int): Int {
 return (@Fancy 1)
 }
}

If you need to annotate the primary constructor of a class, you need to add the constructor keyword to the constructor
declaration, and add the annotations before it:

class Foo @Inject constructor(dependency: MyDependency) {
 // ...
}

You can also annotate property accessors:

class Foo {
 var x: MyDependency? = null
 @Inject set
}

Annotations may have constructors that take parameters.

annotation class Special(val why: String)

@Special("example") class Foo {}

Allowed parameter types are:

types that correspond to Java primitive types (Int, Long etc.);
strings;

Annotations

Annotation Declaration

—

—

—

—

Usage

Constructors

—
—

144

classes (Foo::class);

enums;
other annotations;
arrays of the types listed above.

Annotation parameters cannot have nullable types, because the JVM does not support storing null as a value of an annotation
attribute.

If an annotation is used as a parameter of another annotation, its name is not prefixed with the @ character:

annotation class ReplaceWith(val expression: String)

annotation class Deprecated(
 val message: String,
 val replaceWith: ReplaceWith = ReplaceWith(""))

@Deprecated("This function is deprecated, use === instead", ReplaceWith("this === other"))

If you need to specify a class as an argument of an annotation, use a Kotlin class (KClass). The Kotlin compiler will automatically
convert it to a Java class, so that the Java code will be able to see the annotations and arguments normally.

import kotlin.reflect.KClass

annotation class Ann(val arg1: KClass<*>, val arg2: KClass<out Any>)

@Ann(String::class, Int::class) class MyClass

Annotations can also be used on lambdas. They will be applied to the invoke() method into which the body of the lambda is
generated. This is useful for frameworks like Quasar, which uses annotations for concurrency control.

annotation class Suspendable

val f = @Suspendable { Fiber.sleep(10) }

When you're annotating a property or a primary constructor parameter, there are multiple Java elements which are generated
from the corresponding Kotlin element, and therefore multiple possible locations for the annotation in the generated Java
bytecode. To specify how exactly the annotation should be generated, use the following syntax:

class Example(@field:Ann val foo, // annotate Java field
 @get:Ann val bar, // annotate Java getter
 @param:Ann val quux) // annotate Java constructor parameter

The same syntax can be used to annotate the entire file. To do this, put an annotation with the target file at the top level of a
file, before the package directive or before all imports if the file is in the default package:

@file:JvmName("Foo")

package org.jetbrains.demo

If you have multiple annotations with the same target, you can avoid repeating the target by adding brackets after the target and
putting all the annotations inside the brackets:

—

—
—
—

Lambdas

Annotation Use-site Targets

145

http://www.paralleluniverse.co/quasar/

class Example {
 @set:[Inject VisibleForTesting]
 var collaborator: Collaborator
}

The full list of supported use-site targets is:

file ;

property (annotations with this target are not visible to Java);

field ;

get (property getter);

set (property setter);

receiver (receiver parameter of an extension function or property);

param (constructor parameter);

setparam (property setter parameter);

delegate (the field storing the delegate instance for a delegated property).

To annotate the receiver parameter of an extension function, use the following syntax:

fun @receiver:Fancy String.myExtension() { }

If you don't specify a use-site target, the target is chosen according to the @Target annotation of the annotation being used. If
there are multiple applicable targets, the first applicable target from the following list is used:

param ;

property ;

field .

Java annotations are 100% compatible with Kotlin:

import org.junit.Test
import org.junit.Assert.*
import org.junit.Rule
import org.junit.rules.*

class Tests {
 // apply @Rule annotation to property getter
 @get:Rule val tempFolder = TemporaryFolder()

 @Test fun simple() {
 val f = tempFolder.newFile()
 assertEquals(42, getTheAnswer())
 }
}

Since the order of parameters for an annotation written in Java is not defined, you can't use a regular function call syntax for
passing the arguments. Instead, you need to use the named argument syntax:

// Java
public @interface Ann {
 int intValue();
 String stringValue();
}

—

—

—

—

—

—

—

—

—

—

—

—

Java Annotations

146

// Kotlin
@Ann(intValue = 1, stringValue = "abc") class C

Just like in Java, a special case is the value parameter; its value can be specified without an explicit name:

// Java
public @interface AnnWithValue {
 String value();
}

// Kotlin
@AnnWithValue("abc") class C

If the value argument in Java has an array type, it becomes a vararg parameter in Kotlin:

// Java
public @interface AnnWithArrayValue {
 String[] value();
}

// Kotlin
@AnnWithArrayValue("abc", "foo", "bar") class C

For other arguments that have an array type, you need to use the array literal syntax (since Kotlin 1.2) or arrayOf(...) :

// Java
public @interface AnnWithArrayMethod {
 String[] names();
}

// Kotlin 1.2+:
@AnnWithArrayMethod(names = ["abc", "foo", "bar"])
class C

// Older Kotlin versions:
@AnnWithArrayMethod(names = arrayOf("abc", "foo", "bar"))
class D

Values of an annotation instance are exposed as properties to Kotlin code:

// Java
public @interface Ann {
 int value();
}

// Kotlin
fun foo(ann: Ann) {
 val i = ann.value
}

Arrays as annotation parameters

Accessing properties of an annotation instance

147

Reflection is a set of language and library features that allows for introspecting the structure of your own program at runtime.
Kotlin makes functions and properties first-class citizens in the language, and introspecting them (i.e. learning a name or a type
of a property or function at runtime) is closely intertwined with simply using a functional or reactive style.

On the Java platform, the runtime component required for using the re<ection features is distributed as a separate JAR
5le (kotlin-reflect.jar). This is done to reduce the required size of the runtime library for applications that do not
use re<ection features. If you do use re<ection, please make sure that the .jar 5le is added to the classpath of your
project.

The most basic reflection feature is getting the runtime reference to a Kotlin class. To obtain the reference to a statically known
Kotlin class, you can use the class literal syntax:

val c = MyClass::class

The reference is a value of type KClass.

Note that a Kotlin class reference is not the same as a Java class reference. To obtain a Java class reference, use the .java
property on a KClass instance.

You can get the reference to a class of a specific object with the same ::class syntax by using the object as a receiver:

val widget: Widget = ...
assert(widget is GoodWidget) { "Bad widget: ${widget::class.qualifiedName}" }

You obtain the reference to an exact class of an object, for instance GoodWidget or BadWidget , despite the type of the receiver
expression (Widget).

References to functions, properties, and constructors, apart from introspecting the program structure, can also be called or
used as instances of function types.

The common supertype for all callable references is KCallable<out R>, where R is the return value type, which is the property
type for properties, and the constructed type for constructors.

When we have a named function declared like this:

fun isOdd(x: Int) = x % 2 != 0

We can easily call it directly (isOdd(5)), but we can also use it as a function type value, e.g. pass it to another function. To do
this, we use the :: operator:

 val numbers = listOf(1, 2, 3)
 println(numbers.filter(::isOdd))

Here ::isOdd is a value of function type (Int) -> Boolean .

Function references belong to one of the KFunction<out R> subtypes, depending on the parameter count, e.g.
KFunction3<T1, T2, T3, R> .

Re<ection

Class References

Bound Class References (since 1.1)

Callable references

Function References

148

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-callable/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-function/index.html

:: can be used with overloaded functions when the expected type is known from the context. For example:

 fun isOdd(x: Int) = x % 2 != 0
 fun isOdd(s: String) = s == "brillig" || s == "slithy" || s == "tove"

 val numbers = listOf(1, 2, 3)
 println(numbers.filter(::isOdd)) // refers to isOdd(x: Int)

Alternatively, you can provide the necessary context by storing the method reference in a variable with an explicitly specified
type:

val predicate: (String) -> Boolean = ::isOdd // refers to isOdd(x: String)

If we need to use a member of a class, or an extension function, it needs to be qualified, e.g. String::toCharArray .

Note that even if you initialize a variable with a reference to an extension function, the inferred function type will have no receiver
(it will have an additional parameter accepting a receiver object). To have a function type with receiver instead, specify the type
explicitly:

val isEmptyStringList: List<String>.() -> Boolean = List::isEmpty

Consider the following function:

fun <A, B, C> compose(f: (B) -> C, g: (A) -> B): (A) -> C {
 return { x -> f(g(x)) }
}

It returns a composition of two functions passed to it: compose(f, g) = f(g(*)) . Now, you can apply it to callable references:

 fun length(s: String) = s.length

 val oddLength = compose(::isOdd, ::length)
 val strings = listOf("a", "ab", "abc")

 println(strings.filter(oddLength))

To access properties as first-class objects in Kotlin, we can also use the :: operator:

The expression ::x evaluates to a property object of type KProperty<Int> , which allows us to read its value using get() or
retrieve the property name using the name property. For more information, please refer to the docs on the KProperty class.

For a mutable property, e.g. var y = 1 , ::y returns a value of type KMutableProperty<Int>, which has a set() method:

A property reference can be used where a function with one parameter is expected:

 val strs = listOf("a", "bc", "def")
 println(strs.map(String::length))

To access a property that is a member of a class, we qualify it:

Example: Function Composition

Property References

149

 class A(val p: Int)
 val prop = A::p
 println(prop.get(A(1)))

For an extension property:

On the Java platform, standard library contains extensions for reflection classes that provide a mapping to and from Java
reflection objects (see package kotlin.reflect.jvm). For example, to find a backing field or a Java method that serves as a
getter for a Kotlin property, you can say something like this:

import kotlin.reflect.jvm.*

class A(val p: Int)

fun main(args: Array<String>) {
 println(A::p.javaGetter) // prints "public final int A.getP()"
 println(A::p.javaField) // prints "private final int A.p"
}

To get the Kotlin class corresponding to a Java class, use the .kotlin extension property:

fun getKClass(o: Any): KClass<Any> = o.javaClass.kotlin

Constructors can be referenced just like methods and properties. They can be used wherever an object of function type is
expected that takes the same parameters as the constructor and returns an object of the appropriate type. Constructors are
referenced by using the :: operator and adding the class name. Consider the following function that expects a function
parameter with no parameters and return type Foo :

class Foo

fun function(factory: () -> Foo) {
 val x: Foo = factory()
}

Using ::Foo , the zero-argument constructor of the class Foo, we can simply call it like this:

function(::Foo)

Callable references to constructors are typed as one of the KFunction<out R> subtypes , depending on the parameter count.

You can refer to an instance method of a particular object:

 val numberRegex = "\\d+".toRegex()
 println(numberRegex.matches("29"))

 val isNumber = numberRegex::matches
 println(isNumber("29"))

Interoperability With Java Re0ection

Constructor References

Bound Function and Property References (since 1.1)

150

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-function/index.html

Instead of calling the method matches directly we are storing a reference to it. Such reference is bound to its receiver. It can be
called directly (like in the example above) or used whenever an expression of function type is expected:

 val strings = listOf("abc", "124", "a70")
 println(strings.filter(numberRegex::matches))

Compare the types of bound and the corresponding unbound references. Bound callable reference has its receiver "attached"
to it, so the type of the receiver is no longer a parameter:

val isNumber: (CharSequence) -> Boolean = numberRegex::matches

val matches: (Regex, CharSequence) -> Boolean = Regex::matches

Property reference can be bound as well:

 val prop = "abc"::length
 println(prop.get())

Since Kotlin 1.2, explicitly specifying this as the receiver is not necessary: this::foo and ::foo are equivalent.

A bound callable reference to a constructor of an inner class can be obtained by providing an instance of the outer class:

class Outer {
 inner class Inner
}

val o = Outer()
val boundInnerCtor = o::Inner

Bound constructor references

151

By using well-named functions as builders in combination with function literals with receiver it is possible to create type-safe,
statically-typed builders in Kotlin.

Type-safe builders allow for creating Kotlin-based domain-specific languages (DSLs) suitable for building complex hierarchical
data structures in a semi-declarative way. Some of the example use cases for the builders are:

Generating markup with Kotlin code, such as HTML or XML;
Programmatically laying out UI components: Anko
Configuring routes for a web server: Ktor.

Consider the following code:

import com.example.html.* // see declarations below

fun result(args: Array<String>) =
 html {
 head {
 title {+"XML encoding with Kotlin"}
 }
 body {
 h1 {+"XML encoding with Kotlin"}
 p {+"this format can be used as an alternative markup to XML"}

 // an element with attributes and text content
 a(href = "http://kotlinlang.org") {+"Kotlin"}

 // mixed content
 p {
 +"This is some"
 b {+"mixed"}
 +"text. For more see the"
 a(href = "http://kotlinlang.org") {+"Kotlin"}
 +"project"
 }
 p {+"some text"}

 // content generated by
 p {
 for (arg in args)
 +arg
 }
 }
 }

This is completely legitimate Kotlin code. You can play with this code online (modify it and run in the browser) here.

Let's walk through the mechanisms of implementing type-safe builders in Kotlin. First of all we need to define the model we want
to build, in this case we need to model HTML tags. It is easily done with a bunch of classes. For example, HTML is a class that
describes the <html> tag, i.e. it defines children like <head> and <body> . (See its declaration below.)

Now, let's recall why we can say something like this in the code:

html {
 // ...
}

html is actually a function call that takes a lambda expression as an argument. This function is defined as follows:

Type-Safe Builders

—
—
—

A type-safe builder example

How it works

152

https://github.com/Kotlin/kotlinx.html
https://github.com/Kotlin/anko/wiki/Anko-Layouts
http://ktor.io/features/routing.html#routing-tree
http://try.kotlinlang.org/#/Examples/Longer examples/HTML Builder/HTML Builder.kt

fun html(init: HTML.() -> Unit): HTML {
 val html = HTML()
 html.init()
 return html
}

This function takes one parameter named init , which is itself a function. The type of the function is HTML.() -> Unit , which
is a function type with receiver. This means that we need to pass an instance of type HTML (a receiver) to the function, and we
can call members of that instance inside the function. The receiver can be accessed through the this keyword:

html {
 this.head { /* ... */ }
 this.body { /* ... */ }
}

(head and body are member functions of HTML .)

Now, this can be omitted, as usual, and we get something that looks very much like a builder already:

html {
 head { /* ... */ }
 body { /* ... */ }
}

So, what does this call do? Let's look at the body of html function as defined above. It creates a new instance of HTML , then it
initializes it by calling the function that is passed as an argument (in our example this boils down to calling head and body on
the HTML instance), and then it returns this instance. This is exactly what a builder should do.

The head and body functions in the HTML class are defined similarly to html . The only difference is that they add the built
instances to the children collection of the enclosing HTML instance:

fun head(init: Head.() -> Unit) : Head {
 val head = Head()
 head.init()
 children.add(head)
 return head
}

fun body(init: Body.() -> Unit) : Body {
 val body = Body()
 body.init()
 children.add(body)
 return body
}

Actually these two functions do just the same thing, so we can have a generic version, initTag :

protected fun <T : Element> initTag(tag: T, init: T.() -> Unit): T {
 tag.init()
 children.add(tag)
 return tag
}

So, now our functions are very simple:

fun head(init: Head.() -> Unit) = initTag(Head(), init)

fun body(init: Body.() -> Unit) = initTag(Body(), init)

And we can use them to build <head> and <body> tags.

153

One other thing to be discussed here is how we add text to tag bodies. In the example above we say something like:

html {
 head {
 title {+"XML encoding with Kotlin"}
 }
 // ...
}

So basically, we just put a string inside a tag body, but there is this little + in front of it, so it is a function call that invokes a prefix
unaryPlus() operation. That operation is actually defined by an extension function unaryPlus() that is a member of the
TagWithText abstract class (a parent of Title):

operator fun String.unaryPlus() {
 children.add(TextElement(this))
}

So, what the prefix + does here is it wraps a string into an instance of TextElement and adds it to the children collection, so
that it becomes a proper part of the tag tree.

All this is defined in a package com.example.html that is imported at the top of the builder example above. In the last section
you can read through the full definition of this package.

When using DSLs, one might have come across the problem that too many functions can be called in the context. We can call
methods of every available implicit receiver inside a lambda and therefore get an inconsistent result, like the tag head inside
another head :

html {
 head {
 head {} // should be forbidden
 }
 // ...
}

In this example only members of the nearest implicit receiver this@head must be available; head() is a member of the outer
receiver this@html , so it must be illegal to call it.

To address this problem, in Kotlin 1.1 a special mechanism to control receiver scope was introduced.

To make the compiler start controlling scopes we only have to annotate the types of all receivers used in the DSL with the same
marker annotation. For instance, for HTML Builders we declare an annotation @HTMLTagMarker :

@DslMarker
annotation class HtmlTagMarker

An annotation class is called a DSL marker if it is annotated with the @DslMarker annotation.

In our DSL all the tag classes extend the same superclass Tag . It's enough to annotate only the superclass with
@HtmlTagMarker and after that the Kotlin compiler will treat all the inherited classes as annotated:

@HtmlTagMarker
abstract class Tag(val name: String) { ... }

We don't have to annotate the HTML or Head classes with @HtmlTagMarker because their superclass is already annotated:

class HTML() : Tag("html") { ... }
class Head() : Tag("head") { ... }

Scope control: @DslMarker (since 1.1)

154

After we've added this annotation, the Kotlin compiler knows which implicit receivers are part of the same DSL and allows to call
members of the nearest receivers only:

html {
 head {
 head { } // error: a member of outer receiver
 }
 // ...
}

Note that it's still possible to call the members of the outer receiver, but to do that you have to specify this receiver explicitly:

html {
 head {
 this@html.head { } // possible
 }
 // ...
}

This is how the package com.example.html is defined (only the elements used in the example above). It builds an HTML tree. It
makes heavy use of extension functions and lambdas with receiver.

Note that the @DslMarker annotation is available only since Kotlin 1.1.

package com.example.html

interface Element {
 fun render(builder: StringBuilder, indent: String)
}

class TextElement(val text: String) : Element {
 override fun render(builder: StringBuilder, indent: String) {
 builder.append("$indent$text\n")
 }
}

@DslMarker
annotation class HtmlTagMarker

@HtmlTagMarker
abstract class Tag(val name: String) : Element {
 val children = arrayListOf<Element>()
 val attributes = hashMapOf<String, String>()

 protected fun <T : Element> initTag(tag: T, init: T.() -> Unit): T {
 tag.init()
 children.add(tag)
 return tag
 }

 override fun render(builder: StringBuilder, indent: String) {
 builder.append("$indent<$name${renderAttributes()}>\n")
 for (c in children) {
 c.render(builder, indent + " ")
 }
 builder.append("$indent</$name>\n")
 }

 private fun renderAttributes(): String {
 val builder = StringBuilder()
 for ((attr, value) in attributes) {
 builder.append(" $attr=\"$value\"")

Full de5nition of the com.example.html package

155

 }
 return builder.toString()
 }

 override fun toString(): String {
 val builder = StringBuilder()
 render(builder, "")
 return builder.toString()
 }
}

abstract class TagWithText(name: String) : Tag(name) {
 operator fun String.unaryPlus() {
 children.add(TextElement(this))
 }
}

class HTML : TagWithText("html") {
 fun head(init: Head.() -> Unit) = initTag(Head(), init)

 fun body(init: Body.() -> Unit) = initTag(Body(), init)
}

class Head : TagWithText("head") {
 fun title(init: Title.() -> Unit) = initTag(Title(), init)
}

class Title : TagWithText("title")

abstract class BodyTag(name: String) : TagWithText(name) {
 fun b(init: B.() -> Unit) = initTag(B(), init)
 fun p(init: P.() -> Unit) = initTag(P(), init)
 fun h1(init: H1.() -> Unit) = initTag(H1(), init)
 fun a(href: String, init: A.() -> Unit) {
 val a = initTag(A(), init)
 a.href = href
 }
}

class Body : BodyTag("body")
class B : BodyTag("b")
class P : BodyTag("p")
class H1 : BodyTag("h1")

class A : BodyTag("a") {
 var href: String
 get() = attributes["href"]!!
 set(value) {
 attributes["href"] = value
 }
}

fun html(init: HTML.() -> Unit): HTML {
 val html = HTML()
 html.init()
 return html
}

156

Type aliases provide alternative names for existing types. If the type name is too long you can introduce a different shorter name
and use the new one instead.

It's useful to shorten long generic types. For instance, it's often tempting to shrink collection types:

typealias NodeSet = Set<Network.Node>

typealias FileTable<K> = MutableMap<K, MutableList<File>>

You can provide different aliases for function types:

typealias MyHandler = (Int, String, Any) -> Unit

typealias Predicate<T> = (T) -> Boolean

You can have new names for inner and nested classes:

class A {
 inner class Inner
}
class B {
 inner class Inner
}

typealias AInner = A.Inner
typealias BInner = B.Inner

Type aliases do not introduce new types. They are equivalent to the corresponding underlying types. When you add typealias
Predicate<T> and use Predicate<Int> in your code, the Kotlin compiler always expand it to (Int) -> Boolean . Thus you
can pass a variable of your type whenever a general function type is required and vice versa:

typealias Predicate<T> = (T) -> Boolean

fun foo(p: Predicate<Int>) = p(42)

fun main(args: Array<String>) {
 val f: (Int) -> Boolean = { it > 0 }
 println(foo(f)) // prints "true"

 val p: Predicate<Int> = { it > 0 }
 println(listOf(1, -2).filter(p)) // prints "[1]"
}

Type aliases

157

Multiplatform projects are a new experimental feature in Kotlin 1.2. All of the language and tooling features described
in this document are subject to change in future Kotlin versions.

A Kotlin multiplatform project allows you to compile the same code to multiple target platforms. At this time supported target
platforms are the JVM and JS, with Native to be added later.

A multiplatform project consists of three types of modules:

A common module contains code that is not specific to any platform, as well as declarations without implementation of
platform-dependent APIs. Those declarations allow common code to depend on platform-specific implementations.
A platform module contains implementations of platform-dependent declarations in the common module for a specific
platform, as well as other platform-dependent code. A platform module is always an implementation of a single common
module.
A regular module. Such modules target a specific platform and can either be dependencies of platform modules or depend
on platform modules.

A common module can depend only on other common modules and libraries, including the common version of the Kotlin
standard library (kotlin-stdlib-common). Common modules contain only Kotlin code, and not code in any other languages.

A platform module can depend on any modules and libraries available on the given platform (including Java libraries in case of
Kotlin/JVM and JS libraries for Kotlin/JS). Platform modules targeting Kotlin/JVM can also contain code in Java and other JVM
languages.

Compiling a common module produces a special metadata file containing all the declarations in the module. Compiling a
platform module produces target-specific code (JVM bytecode or JS source code) for the code in the platform module as well as
the common module that it implements.

Therefore, each multiplatform library needs to be distributed as a set of artifacts - a common .jar containing the metadata for
common code, as well as platform specific .jars containing the compiled implementation code for each platform.

As of Kotlin 1.2, multiplatform projects have to be built with Gradle; other build systems are not supported.

To create a new multiplatform project in the IDE, select the "Kotlin (Multiplatform)" option under "Kotlin" in the New Project dialog.
This will create a project with three modules, a common one and two platform ones for JVM and JS. To add additional modules,
select one of the "Kotlin (Multiplatform)" options under "Gradle" in the New Module dialog.

If you need to configure the project manually, use the following steps:

Add the Kotlin Gradle plugin to the buildscript classpath: classpath "org.jetbrains.kotlin:kotlin-gradle-
plugin:$kotlin_version"

Apply the kotlin-platform-common plugin to the common module

Add the kotlin-stdlib-common dependency to the common module

Apply the kotlin-platform-jvm , kotlin-platform-android , and kotlin-platform-js plugins to the platform modules
for JVM, Android, and JS, respectively
Add dependencies with expectedBy scope from the platform modules to the common module

The following example demonstrates a complete build.gradle file for a common module with Kotlin 1.2-Beta:

Multiplatform Projects

Multiplatform Project Structure

—

—

—

Setting Up a Multiplatform Project

—

—

—

—

—

158

buildscript {
 ext.kotlin_version = '1.2.31'

 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"
 }
}

apply plugin: 'kotlin-platform-common'

repositories {
 mavenCentral()
}

dependencies {
 compile "org.jetbrains.kotlin:kotlin-stdlib-common:$kotlin_version"
 testCompile "org.jetbrains.kotlin:kotlin-test-common:$kotlin_version"
}

And the example below shows a complete build.gradle for a JVM module. Pay special attention to the expectedBy line in the
dependencies block:

buildscript {
 ext.kotlin_version = '1.2.31'

 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"
 }
}

apply plugin: 'kotlin-platform-jvm'

repositories {
 mavenCentral()
}

dependencies {
 compile "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"
 expectedBy project(":")
 testCompile "junit:junit:4.12"
 testCompile "org.jetbrains.kotlin:kotlin-test-junit:$kotlin_version"
 testCompile "org.jetbrains.kotlin:kotlin-test:$kotlin_version"
}

One of the key capabilities of Kotlin's multiplatform code is a way for common code to depend on platform-specific declarations.
In other languages, this can often be accomplished by building a set of interfaces in the common code and implementing these
interfaces in platform-specific modules. However, this approach is not ideal in cases when you have a library on one of the
platforms that implements the functionality you need, and you'd like to use the API of this library directly without extra wrappers.
Also, it requires common declarations to be expressed as interfaces, which doesn't cover all possible cases.

As an alternative, Kotlin provides a mechanism of expected and actual declarations. With this mechanism, a common module
can define expected declarations, and a platform module can provide actual declarations corresponding to the expected ones.
To see how this works, let's look at an example first. This code is part of a common module:

Platform-Speci5c Declarations

159

package org.jetbrains.foo

expect class Foo(bar: String) {
 fun frob()
}

fun main(args: Array<String>) {
 Foo("Hello").frob()
}

And this is the corresponding JVM module:

package org.jetbrains.foo

actual class Foo actual constructor(val bar: String) {
 actual fun frob() {
 println("Frobbing the $bar")
 }
}

This illustrates several important points:

An expected declaration in the common module and its actual counterparts always have exactly the same fully qualified
name.
An expected declaration is marked with the expect keyword; the actual declaration is marked with the actual keyword.

All actual declarations that match any part of an expected declaration need to be marked as actual .

Expected declarations never contain any implementation code.

Note that expected declarations are not restricted to interfaces and interface members. In this example, the expected class has
a constructor and can be created directly from common code. You can apply the expect modifier to other declarations as well,
including top-level declarations and annotations:

// Common
expect fun formatString(source: String, vararg args: Any): String

expect annotation class Test

// JVM
actual fun formatString(source: String, vararg args: Any) =
 String.format(source, args)

actual typealias Test = org.junit.Test

The compiler ensures that every expected declaration has actual declarations in all platform modules that implement the
corresponding common module, and reports an error if any actual declarations are missing. The IDE provides tools that help you
create the missing actual declarations.

If you have a platform-specific library that you want to use in common code while providing your own implementation for another
platform, you can provide a typealias to an existing class as the actual declaration:

expect class AtomicRef<V>(value: V) {
 fun get(): V
 fun set(value: V)
 fun getAndSet(value: V): V
 fun compareAndSet(expect: V, update: V): Boolean
}

actual typealias AtomicRef<V> = java.util.concurrent.atomic.AtomicReference<V>

—

—

—

—

Multiplatform tests

160

It is possible to write tests in a common project so that they will be compiled and run in each platform project. There are 4
annotations provided in kotlin.test package to markup tests in common code: @Test , @Ignore , @BeforeTest and
@AfterTest . In JVM platform these annotations are mapped to the corresponding JUnit 4 annotations, and in JS they are already
available since 1.1.4 to support JS unit testing.

In order to use them you need to add a dependency on kotlin-test-annotations-common to your common module, on
kotlin-test-junit to your JVM module, and on kotlin-test-js to the JS module.

161

Reference

The following tokens are always interpreted as keywords and cannot be used as identifiers:

as

is used for type casts
specifies an alias for an import

as? is used for safe type casts

break terminates the execution of a loop

class declares a class

continue proceeds to the next step of the nearest enclosing loop

do begins a do/while loop (loop with postcondition)

else defines the branch of an if expression which is executed when the condition is false

false specifies the 'false' value of the Boolean type

for begins a for loop

fun declares a function

if begins an if expression

in

specifies the object being iterated in a for loop
is used as an infix operator to check that a value belongs to a range, a collection or another entity that defines the
'contains' method
is used in when expressions for the same purpose
marks a type parameter as contravariant

!in

is used as an operator to check that a value does NOT belong to a range, a collection or another entity that defines the
'contains' method
is used in when expressions for the same purpose

interface declares an interface

is

checks that a value has a certain type
is used in when expressions for the same purpose

!is

checks that a value does NOT have a certain type
is used in when expressions for the same purpose

null is a constant representing an object reference that doesn't point to any object

object declares a class and its instance at the same time

package specifies the package for the current file

Keywords and Operators

Hard Keywords

—

—
—

—

—

—

—

—

—

—

—

—

—

—

—
—

—
—

—

—

—

—

—

—
—

—

—
—

—

—

—

162

http://kotlinlang.org/docs/reference/returns.html

return returns from the nearest enclosing function or anonymous function

super

refers to the superclass implementation of a method or property
calls the superclass constructor from a secondary constructor

this

refers to the current receiver
calls another constructor of the same class from a secondary constructor

throw throws an exception

true specifies the 'true' value of the Boolean type

try begins an exception handling block

typealias declares a type alias

val declares a read-only property or local variable

var declares a mutable property or local variable

when begins a when expression (executes one of the given branches)

while begins a while loop (loop with precondition)

The following tokens act as keywords in the context when they are applicable and can be used as identifiers in other contexts:

by

delegates the implementation of an interface to another object
delegates the implementation of accessors for a property to another object

catch begins a block that handles a specific exception type

constructor declares a primary or secondary constructor

delegate is used as an annotation use-site target

dynamic references a dynamic type in Kotlin/JS code

field is used as an annotation use-site target

file is used as an annotation use-site target

finally begins a block that is always executed when a try block exits

get

declares the getter of a property
is used as an annotation use-site target

import imports a declaration from another package into the current file

init begins an initializer block

param is used as an annotation use-site target

property is used as an annotation use-site target

receiver is used as an annotation use-site target

set

declares the setter of a property
is used as an annotation use-site target

setparam is used as an annotation use-site target

where specifies constraints for a generic type parameter

The following tokens act as keywords in modifier lists of declarations and can be used as identifiers in other contexts:

—

—

—
—

—

—
—

—

—

—

—

—

—

—

—

Soft Keywords

—

—
—

—

—

—

—

—

—

—

—

—
—

—

—

—

—

—

—

—
—

—

—

Modi5er Keywords

163

http://kotlinlang.org/docs/reference/classes.html#constructors

actual denotes a platform-specific implementation in multiplatform projects

abstract marks a class or member as abstract

annotation declares an annotation class

companion declares a companion object

const marks a property as a compile-time constant

crossinline forbids non-local returns in a lambda passed to an inline function

data instructs the compiler to generate canonical members for a class

enum declares an enumeration

expect marks a declaration as platform-specific, expecting an implementation in platform modules.

external marks a declaration as implemented not in Kotlin (accessible through JNI or in JavaScript)

final forbids overriding a member

infix allows calling a function in infix notation

inline tells the compiler to inline the function and the lambdas passed to it at the call site

inner allows referring to the outer class instance from a nested class

internal marks a declaration as visible in the current module

lateinit allows initializing a non-null property outside of a constructor

noinline turns off inlining of a lambda passed to an inline function

open allows subclassing a class or overriding a member

operator marks a function as overloading an operator or implementing a convention

out marks a type parameter as covariant

override marks a member as an override of a superclass member

private marks a declaration as visible in the current class or file

protected marks a declaration as visible in the current class and its subclasses

public marks a declaration as visible anywhere

reified marks a type parameter of an inline function as accessible at runtime

sealed declares a sealed class (a class with restricted subclassing)

suspend marks a function or lambda as suspending (usable as a coroutine)

tailrec marks a function as tail-recursive (allowing the compiler to replace recursion with iteration)

vararg allows passing a variable number of arguments for a parameter

The following identifiers are defined by the compiler in specific contexts and can be used as regular identifiers in other
contexts:

field is used inside a property accessor to refer to the backing field of the property

it is used inside a lambda to refer to its parameter implicitly

Kotlin supports the following operators and special symbols:

+ , - , * , / , % - mathematical operators

* is also used to pass an array to a vararg parameter

=

assignment operator
is used to specify default values for parameters

+= , -= , *= , /= , %= - augmented assignment operators

++ , -- - increment and decrement operators

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

Special Identi5ers

—

—

Operators and Special Symbols

—

—

—

—
—

—

—

164

&& , || , ! - logical 'and', 'or', 'not' operators (for bitwise operations, use corresponding infix functions)

== , != - equality operators (translated to calls of equals() for non-primitive types)

=== , !== - referential equality operators

< , > , <= , >= - comparison operators (translated to calls of compareTo() for non-primitive types)

[,] - indexed access operator (translated to calls of get and set)

!! asserts that an expression is non-null

?. performs a safe call (calls a method or accesses a property if the receiver is non-null)

?: takes the right-hand value if the left-hand value is null (the elvis operator)

:: creates a member reference or a class reference

.. creates a range

: separates a name from a type in declarations

? marks a type as nullable

->

separates the parameters and body of a lambda expression
separates the parameters and return type declaration in a function type
separates the condition and body of a when expression branch

@

introduces an annotation
introduces or references a loop label
introduces or references a lambda label
references a 'this' expression from an outer scope
references an outer superclass

; separates multiple statements on the same line

$ references a variable or expression in a string template

_

substitutes an unused parameter in a lambda expression
substitutes an unused parameter in a destructuring declaration

—

—

—

—

—

—

—

—

—

—

—

—

—

—
—
—

—

—
—
—
—
—

—

—

—

—
—

165

http://kotlinlang.org/docs/reference/null-safety.html#elvis-operator
http://kotlinlang.org/docs/reference/control-flow.html#when-expression
http://kotlinlang.org/docs/reference/multi-declarations.html#underscore-for-unused-variables-since-11

This section informally explains the grammar notation used below.

Terminal symbol names start with an uppercase letter, e.g. SimpleName.
Nonterminal symbol names start with a lowercase letter, e.g. kotlinFile.
Each production starts with a colon (:).
Symbol definitions may have many productions and are terminated by a semicolon (;).
Symbol definitions may be prepended with attributes, e.g. start attribute denotes a start symbol.

Operator | denotes alternative.
Operator * denotes iteration (zero or more).
Operator + denotes iteration (one or more).
Operator ? denotes option (zero or one).
alpha { beta } denotes a nonempty beta-separated list of alpha's.
Operator ++ means that no space or comment is allowed between operands.

Kotlin provides "semicolon inference": syntactically, subsentences (e.g., statements, declarations etc) are separated by the
pseudo-token SEMI, which stands for "semicolon or newline". In most cases, there's no need for semicolons in Kotlin code.

Relevant pages: Packages

start
kotlinFile
 : preamble topLevelObject*
 ;
start
script
 : preamble expression*
 ;
preamble
(used by script, kotlinFile)
 : fileAnnotations? packageHeader? import*
 ;
fileAnnotations
(used by preamble)
 : fileAnnotation*
 ;
fileAnnotation
(used by fileAnnotations)
 : "@" "file" ":" ("[" unescapedAnnotation+ "]" | unescapedAnnotation)
 ;
packageHeader
(used by preamble)
 : modifiers "package" SimpleName{"."} SEMI?
 ;
See Packages

import
(used by preamble)
 : "import" SimpleName{"."} ("." "*" | "as" SimpleName)? SEMI?
 ;
See Imports

topLevelObject
(used by kotlinFile)
 : class
 : object
 : function
 : property
 : typeAlias
 ;
typeAlias
(used by memberDeclaration, declaration, topLevelObject)
 : modifiers "typealias" SimpleName typeParameters? "=" type

Grammar

Notation

Symbols and naming

EBNF expressions

Semicolons

Syntax

166

 ;

See Classes and Inheritance

class
(used by memberDeclaration, declaration, topLevelObject)
 : modifiers ("class" | "interface") SimpleName
 typeParameters?
 primaryConstructor?
 (":" annotations delegationSpecifier{","})?
 typeConstraints
 (classBody? | enumClassBody)
 ;
primaryConstructor
(used by class, object)
 : (modifiers "constructor")? ("(" functionParameter{","} ")")
 ;
classBody
(used by objectLiteral, enumEntry, class, companionObject, object)
 : ("{" members "}")?
 ;
members
(used by enumClassBody, classBody)
 : memberDeclaration*
 ;
delegationSpecifier
(used by objectLiteral, class, companionObject, object)
 : constructorInvocation
 : userType
 : explicitDelegation
 ;
explicitDelegation
(used by delegationSpecifier)
 : userType "by" expression
 ;
typeParameters
(used by typeAlias, class, property, function)
 : "<" typeParameter{","} ">"
 ;
typeParameter
(used by typeParameters)
 : modifiers SimpleName (":" userType)?
 ;
See Generic classes

typeConstraints
(used by class, property, function)
 : ("where" typeConstraint{","})?
 ;
typeConstraint
(used by typeConstraints)
 : annotations SimpleName ":" type
 ;
See Generic constraints

memberDeclaration
(used by members)
 : companionObject
 : object
 : function
 : property
 : class
 : typeAlias
 : anonymousInitializer
 : secondaryConstructor
 ;
anonymousInitializer
(used by memberDeclaration)
 : "init" block
 ;
companionObject
(used by memberDeclaration)
 : modifiers "companion" "object" SimpleName? (":" delegationSpecifier{","})? classBody?
 ;
valueParameters
(used by secondaryConstructor, function)
 : "(" functionParameter{","}? ")"
 ;
functionParameter
(used by valueParameters, primaryConstructor)
 : modifiers ("val" | "var")? parameter ("=" expression)?
 ;

Classes

Class members

167

block
(used by catchBlock, anonymousInitializer, secondaryConstructor, functionBody, controlStructureBody, try, finallyBlock)
 : "{" statements "}"
 ;
function
(used by memberDeclaration, declaration, topLevelObject)
 : modifiers "fun"
 typeParameters?
 (type ".")?
 SimpleName
 typeParameters? valueParameters (":" type)?
 typeConstraints
 functionBody?
 ;
functionBody
(used by getter, setter, function)
 : block
 : "=" expression
 ;
variableDeclarationEntry
(used by for, lambdaParameter, property, multipleVariableDeclarations)
 : SimpleName (":" type)?
 ;
multipleVariableDeclarations
(used by for, lambdaParameter, property)
 : "(" variableDeclarationEntry{","} ")"
 ;
property
(used by memberDeclaration, declaration, topLevelObject)
 : modifiers ("val" | "var")
 typeParameters?
 (type ".")?
 (multipleVariableDeclarations | variableDeclarationEntry)
 typeConstraints
 ("by" | "=" expression SEMI?)?
 (getter? setter? | setter? getter?) SEMI?
 ;
See Properties and Fields

getter
(used by property)
 : modifiers "get"
 : modifiers "get" "(" ")" (":" type)? functionBody
 ;
setter
(used by property)
 : modifiers "set"
 : modifiers "set" "(" modifiers (SimpleName | parameter) ")" functionBody
 ;
parameter
(used by functionType, setter, functionParameter)
 : SimpleName ":" type
 ;
object
(used by memberDeclaration, declaration, topLevelObject)
 : modifiers "object" SimpleName primaryConstructor? (":" delegationSpecifier{","})? classBody?
 ;
secondaryConstructor
(used by memberDeclaration)
 : modifiers "constructor" valueParameters (":" constructorDelegationCall)? block
 ;
constructorDelegationCall
(used by secondaryConstructor)
 : "this" valueArguments
 : "super" valueArguments
 ;
See Object expressions and Declarations

See Enum classes

enumClassBody
(used by class)
 : "{" enumEntries (";" members)? "}"
 ;
enumEntries
(used by enumClassBody)
 : (enumEntry{","} ","? ";"?)?
 ;
enumEntry
(used by enumEntries)
 : modifiers SimpleName valueArguments? classBody?
 ;

Enum classes

Types

168

See Types

type
(used by namedInfix, simpleUserType, getter, atomicExpression, whenCondition, property, typeArguments, function, typeAlias,
parameter, functionType, variableDeclarationEntry, lambdaParameter, typeConstraint)
 : typeModifiers typeReference
 ;
typeReference
(used by typeReference, nullableType, type)
 : "(" typeReference ")"
 : functionType
 : userType
 : nullableType
 : "dynamic"
 ;
nullableType
(used by typeReference)
 : typeReference "?"
 ;
userType
(used by typeParameter, catchBlock, callableReference, typeReference, delegationSpecifier, constructorInvocation,
explicitDelegation)
 : simpleUserType{"."}
 ;
simpleUserType
(used by userType)
 : SimpleName ("<" (projection? type | "*"){","} ">")?
 ;
projection
(used by simpleUserType)
 : varianceAnnotation
 ;
functionType
(used by typeReference)
 : (type ".")? "(" parameter{","}? ")" "->" type
 ;

See Control structures

controlStructureBody
(used by whenEntry, for, if, doWhile, while)
 : block
 : blockLevelExpression
 ;
if
(used by atomicExpression)
 : "if" "(" expression ")" controlStructureBody SEMI? ("else" controlStructureBody)?
 ;
try
(used by atomicExpression)
 : "try" block catchBlock* finallyBlock?
 ;
catchBlock
(used by try)
 : "catch" "(" annotations SimpleName ":" userType ")" block
 ;
finallyBlock
(used by try)
 : "finally" block
 ;
loop
(used by atomicExpression)
 : for
 : while
 : doWhile
 ;
for
(used by loop)
 : "for" "(" annotations (multipleVariableDeclarations | variableDeclarationEntry) "in" expression ")" controlStructureBody
 ;
while
(used by loop)
 : "while" "(" expression ")" controlStructureBody
 ;
doWhile
(used by loop)
 : "do" controlStructureBody "while" "(" expression ")"
 ;

Control structures

Expressions

Precedence

169

Precedence Title Symbols
Highest Postfix ++, --, ., ?., ?
 Prefix -, +, ++, --, !, labelDefinition
 Type RHS :, as, as?
 Multiplicative *, /, %
 Additive +, -
 Range ..

 Infix function SimpleName

 Elvis ?:

 Named checks in, !in, is, !is
 Comparison <, >, <=, >=
 Equality ==, \!==
 Conjunction &&

 Disjunction ||

Lowest Assignment =, +=, -=, *=, /=, %=

expression
(used by for, atomicExpression, longTemplate, whenCondition, functionBody, doWhile, property, script, explicitDelegation, jump,
while, arrayAccess, blockLevelExpression, if, when, valueArguments, functionParameter)
 : disjunction (assignmentOperator disjunction)*
 ;
disjunction
(used by expression)
 : conjunction ("||" conjunction)*
 ;
conjunction
(used by disjunction)
 : equalityComparison ("&&" equalityComparison)*
 ;
equalityComparison
(used by conjunction)
 : comparison (equalityOperation comparison)*
 ;
comparison
(used by equalityComparison)
 : namedInfix (comparisonOperation namedInfix)*
 ;
namedInfix
(used by comparison)
 : elvisExpression (inOperation elvisExpression)*
 : elvisExpression (isOperation type)?
 ;
elvisExpression
(used by namedInfix)
 : infixFunctionCall ("?:" infixFunctionCall)*
 ;
infixFunctionCall
(used by elvisExpression)
 : rangeExpression (SimpleName rangeExpression)*
 ;
rangeExpression
(used by infixFunctionCall)
 : additiveExpression (".." additiveExpression)*
 ;
additiveExpression
(used by rangeExpression)
 : multiplicativeExpression (additiveOperation multiplicativeExpression)*
 ;
multiplicativeExpression
(used by additiveExpression)
 : typeRHS (multiplicativeOperation typeRHS)*
 ;
typeRHS
(used by multiplicativeExpression)
 : prefixUnaryExpression (typeOperation prefixUnaryExpression)*
 ;
prefixUnaryExpression
(used by typeRHS)
 : prefixUnaryOperation* postfixUnaryExpression
 ;
postfixUnaryExpression
(used by prefixUnaryExpression, postfixUnaryOperation)
 : atomicExpression postfixUnaryOperation*
 : callableReference postfixUnaryOperation*

Rules

170

 ;
callableReference
(used by postfixUnaryExpression)
 : (userType "?"*)? "::" SimpleName typeArguments?
 ;
atomicExpression
(used by postfixUnaryExpression)
 : "(" expression ")"
 : literalConstant
 : functionLiteral
 : "this" labelReference?
 : "super" ("<" type ">")? labelReference?
 : if
 : when
 : try
 : objectLiteral
 : jump
 : loop
 : collectionLiteral
 : SimpleName
 ;
labelReference
(used by atomicExpression, jump)
 : "@" ++ LabelName
 ;
labelDefinition
(used by prefixUnaryOperation, annotatedLambda)
 : LabelName ++ "@"
 ;
literalConstant
(used by atomicExpression)
 : "true" | "false"
 : stringTemplate
 : NoEscapeString
 : IntegerLiteral
 : CharacterLiteral
 : FloatLiteral
 : "null"
 ;
stringTemplate
(used by literalConstant)
 : "\"" stringTemplateElement* "\""
 ;
stringTemplateElement
(used by stringTemplate)
 : RegularStringPart
 : ShortTemplateEntryStart (SimpleName | "this")
 : EscapeSequence
 : longTemplate
 ;
longTemplate
(used by stringTemplateElement)
 : "${" expression "}"
 ;
declaration
(used by statement)
 : function
 : property
 : class
 : typeAlias
 : object
 ;
statement
(used by statements)
 : declaration
 : blockLevelExpression
 ;
blockLevelExpression
(used by statement, controlStructureBody)
 : annotations ("\n")+ expression
 ;
multiplicativeOperation
(used by multiplicativeExpression)
 : "*" : "/" : "%"
 ;
additiveOperation
(used by additiveExpression)
 : "+" : "-"
 ;
inOperation
(used by namedInfix)
 : "in" : "!in"
 ;
typeOperation
(used by typeRHS)
 : "as" : "as?" : ":"
 ;
isOperation
(used by namedInfix)
 : "is" : "!is"

171

 ;
comparisonOperation
(used by comparison)
 : "<" : ">" : ">=" : "<="
 ;
equalityOperation
(used by equalityComparison)
 : "!=" : "=="
 ;
assignmentOperator
(used by expression)
 : "="
 : "+=" : "-=" : "*=" : "/=" : "%="
 ;
prefixUnaryOperation
(used by prefixUnaryExpression)
 : "-" : "+"
 : "++" : "--"
 : "!"
 : annotations
 : labelDefinition
 ;
postfixUnaryOperation
(used by postfixUnaryExpression)
 : "++" : "--" : "!!"
 : callSuffix
 : arrayAccess
 : memberAccessOperation postfixUnaryExpression
 ;
callSuffix
(used by constructorInvocation, postfixUnaryOperation)
 : typeArguments? valueArguments annotatedLambda
 : typeArguments annotatedLambda
 ;
annotatedLambda
(used by callSuffix)
 : ("@" unescapedAnnotation)* labelDefinition? functionLiteral
 ;
memberAccessOperation
(used by postfixUnaryOperation)
 : "." : "?." : "?"
 ;
typeArguments
(used by callSuffix, callableReference, unescapedAnnotation)
 : "<" type{","} ">"
 ;
valueArguments
(used by callSuffix, enumEntry, constructorDelegationCall, unescapedAnnotation)
 : "(" ((SimpleName "=")? "*"? expression){","} ")"
 ;
jump
(used by atomicExpression)
 : "throw" expression
 : "return" ++ labelReference? expression?
 : "continue" ++ labelReference?
 : "break" ++ labelReference?
 ;
functionLiteral
(used by atomicExpression, annotatedLambda)
 : "{" statements "}"
 : "{" lambdaParameter{","} "->" statements "}"
 ;
lambdaParameter
(used by functionLiteral)
 : variableDeclarationEntry
 : multipleVariableDeclarations (":" type)?
 ;
statements
(used by block, functionLiteral)
 : SEMI* statement{SEMI+} SEMI*
 ;
constructorInvocation
(used by delegationSpecifier)
 : userType callSuffix
 ;
arrayAccess
(used by postfixUnaryOperation)
 : "[" expression{","} "]"
 ;
objectLiteral
(used by atomicExpression)
 : "object" (":" delegationSpecifier{","})? classBody
 ;
collectionLiteral
(used by atomicExpression)
 : "[" element{","}? "]"
 ;

When-expression

172

See When-expression

when
(used by atomicExpression)
 : "when" ("(" expression ")")? "{"
 whenEntry*
 "}"
 ;
whenEntry
(used by when)
 : whenCondition{","} "->" controlStructureBody SEMI
 : "else" "->" controlStructureBody SEMI
 ;
whenCondition
(used by whenEntry)
 : expression
 : ("in" | "!in") expression
 : ("is" | "!is") type
 ;

modifiers
(used by typeParameter, getter, packageHeader, class, property, object, function, typeAlias, secondaryConstructor, enumEntry,
setter, companionObject, primaryConstructor, functionParameter)
 : (modifier | annotations)*
 ;
typeModifiers
(used by type)
 : (suspendModifier | annotations)*
 ;
modifier
(used by modifiers)
 : classModifier
 : accessModifier
 : varianceAnnotation
 : memberModifier
 : parameterModifier
 : typeParameterModifier
 : functionModifier
 : propertyModifier
 ;
classModifier
(used by modifier)
 : "abstract"
 : "final"
 : "enum"
 : "open"
 : "annotation"
 : "sealed"
 : "data"
 ;
memberModifier
(used by modifier)
 : "override"
 : "open"
 : "final"
 : "abstract"
 : "lateinit"
 ;
accessModifier
(used by modifier)
 : "private"
 : "protected"
 : "public"
 : "internal"
 ;
varianceAnnotation
(used by modifier, projection)
 : "in"
 : "out"
 ;
parameterModifier
(used by modifier)
 : "noinline"
 : "crossinline"
 : "vararg"
 ;
typeParameterModifier
(used by modifier)
 : "reified"
 ;
functionModifier
(used by modifier)
 : "tailrec"
 : "operator"
 : "infix"
 : "inline"
 : "external"

Modi5ers

173

 : suspendModifier
 ;
propertyModifier
(used by modifier)
 : "const"
 ;
suspendModifier
(used by typeModifiers, functionModifier)
 : "suspend"
 ;

annotations
(used by catchBlock, prefixUnaryOperation, blockLevelExpression, for, typeModifiers, class, modifiers, typeConstraint)
 : (annotation | annotationList)*
 ;
annotation
(used by annotations)
 : "@" (annotationUseSiteTarget ":")? unescapedAnnotation
 ;
annotationList
(used by annotations)
 : "@" (annotationUseSiteTarget ":")? "[" unescapedAnnotation+ "]"
 ;
annotationUseSiteTarget
(used by annotation, annotationList)
 : "field"
 : "file"
 : "property"
 : "get"
 : "set"
 : "receiver"
 : "param"
 : "setparam"
 : "delegate"
 ;
unescapedAnnotation
(used by annotation, fileAnnotation, annotatedLambda, annotationList)
 : SimpleName{"."} typeArguments? valueArguments?
 ;

helper
LongSuffix
(used by IntegerLiteral)
 : "L"
 ;
IntegerLiteral
(used by literalConstant)
 : DecimalLiteral LongSuffix?
 : HexadecimalLiteral LongSuffix?
 : BinaryLiteral LongSuffix?
 ;
helper
Digit
(used by DecimalLiteral, HexDigit)
 : ["0".."9"]
 ;
DecimalLiteral
(used by IntegerLiteral)
 : Digit
 : Digit (Digit | "_")* Digit
 ;
FloatLiteral
(used by literalConstant)
 : <Java double literal>
 ;
helper
HexDigit
(used by HexadecimalLiteral, UnicodeEscapeSequence)
 : Digit | ["A".."F", "a".."f"]
 ;
HexadecimalLiteral
(used by IntegerLiteral)
 : "0" ("x" | "X") HexDigit
 : "0" ("x" | "X") HexDigit (HexDigit | "_")* HexDigit
 ;
helper
BinaryDigit
(used by BinaryLiteral)
 : ("0" | "1")
 ;
BinaryLiteral
(used by IntegerLiteral)
 : "0" ("b" | "B") BinaryDigit
 : "0" ("b" | "B") BinaryDigit (BinaryDigit | "_")* BinaryDigit
CharacterLiteral

Annotations

Lexical structure

174

(used by literalConstant)
 : <character as in Java>
 ;
See Basic types

NoEscapeString
(used by literalConstant)
 : <"""-quoted string>
 ;
RegularStringPart
(used by stringTemplateElement)
 : <any character other than backslash, quote, $ or newline>
 ;
ShortTemplateEntryStart
(used by stringTemplateElement)
 : "$"
 ;
EscapeSequence
(used by stringTemplateElement)
 : UnicodeEscapeSequence | RegularEscapeSequence
 ;
UnicodeEscapeSequence
(used by EscapeSequence)
 : "\u" HexDigit{4}
 ;
RegularEscapeSequence
(used by EscapeSequence)
 : "\" <any character other than newline>
 ;
See String templates

SEMI
(used by whenEntry, if, statements, packageHeader, property, import)
 : <semicolon or newline>
 ;
SimpleName
(used by typeParameter, catchBlock, simpleUserType, atomicExpression, LabelName, packageHeader, class, object,
infixFunctionCall, function, typeAlias, parameter, callableReference, variableDeclarationEntry, stringTemplateElement, enumEntry,
setter, import, companionObject, valueArguments, unescapedAnnotation, typeConstraint)
 : <java identifier>
 : "̀ " <java identifier> "̀ "
 ;
See Java interoperability

LabelName
(used by labelReference, labelDefinition)
 : SimpleName
 ;
See Returns and jumps

175

This page describes compatibility guarantees for different versions and subsystems of Kotlin.

Compatibility means answering the question: for given two versions of Kotlin (for example, 1.2 and 1.1.5), can the code written
for one version be used with another version? The list below explains the compatibility modes of different pairs of versions. Note
that a version is older if it has a smaller version number (even if it was released later than the version with a larger version
number). We use OV for "Older Version", and NV for "Newer Version".

C - Full Compatibility
Language

no syntax changes (modulo bugs*)
new warnings/hints may be added or removed

API (kotlin-stdlib-* , kotlin-reflect-*)

no API changes
deprecations with level WARNING may be added/removed

Binaries (ABI)
runtime: binaries can be used interchangeably
compilation: binaries can be used interchangeably

BCLA - Backward Compatibility for the Language and API
Language

syntax deprecated in OV may be removed in NV
other than that, all code compilable in OV is compilable by in NV (modulo bugs*)
new syntax may be added in NV
some restrictions of OV may be lifted in NV
new warnings/hints may be added or removed

API (kotlin-stdlib-* , kotlin-reflect-*)

new APIs may be added
deprecations with level WARNING may be added/removed

deprecations with level WARNING may be elevated to level ERROR or HIDDEN in NV

BCB - Backward Compatibility for Binaries
Binaries (ABI)

runtime: NV-binaries can be used everywhere where OV binaries worked
NV compiler: code compilable against OV binaries is compilable against NV binaries
OV compiler may not accept NV binaries (e.g. those that exhibit newer language features or APIs)

BC - Full Backward Compatibility
BC = BCLA & BCB

EXP - Experimental feature
see below

NO - No compatibility guarantees
we'll do our best to offer smooth migration, but can give no guarantees
migration is planned individually for every incompatible subsystem

* No changes modulo bugs means that if an important bug is found (e.g. in the compiler diagnostics or elsewhere), a fix for it
may introduce a breaking change, but we are always very careful with such changes.

Compatibility

Compatibility glossary

—
—

—
—

—

—
—

—
—
—

—
—

—
—
—
—
—

—

—
—

—

—
—

—
—
—

—
—

—
—

—
—
—

176

Kotlin for JVM:

patch version updates (e.g. 1.1.X) are fully compatible;
minor version updates (e.g. 1.X) are backwards compatible.

Kotlin 1.0 1.0.X 1.1 1.1.X … 2.0
1.0 - C BC BC … ?

1.0.X C - BC BC … ?
1.1 BC BC - C … ?

1.1.X BC BC C - … ?
… … … … … … …

2.0 ? ? ? ? … -

Kotlin for JS: starting with Kotlin 1.1, both patch and minor version updates provide backward compatibility for the language
and API (BCLA), but no BCB.

Kotlin 1.0.X 1.1 1.1.X … 2.0
1.0.X - EXP EXP … EXP

1.1 EXP - BCLA … ?
1.1.X EXP BCLA - … ?

… … … … … …
2.0 EXP ? ? … -

Kotlin Scripts: both patch and minor version updates provide backward compatibility for the language and API (BCLA), but no
BCB.

Kotlin is available for several platforms (JVM/Android, JavaScript and the upcoming native platforms). Every platform has its own
peculiarities (e.g. JavaScript has no proper integers), so we have to adapt the language accordingly. Our goal is to provide
reasonable code portability without sacrificing too much.

Every platform may feature specific language extensions (such as platform types for JVM and dynamic types for JavaScript) or
restrictions (e.g. some overloading-related restrictions on the JVM), but the core language remains the same.

The Standard Library provides a core API available on all platforms, and we strive to make these APIs work in the same way on
every platform. Along with these, the Standard Library provides platform-specific extensions (e.g. java.io for JVM, or js() for
JavaScript), plus some APIs that can be called uniformly, but work differently (such as regular expressions for JVM and JavaScript).

Experimental features, such as coroutines in Kotlin 1.1, have exemption from the compatibility modes listed above. Such
features require an opt-in to use without compiler warning. Experimental features are at least backwards compatible for patch
version updates, but we do not guarantee any compatibility for minor version updates (migration aids will be provided where
possible).

Kotlin 1.1 1.1.X 1.2 1.2.X
1.1 - BC NO NO

1.1.X BC - NO NO
1.2 NO NO - BC

1.2.X NO NO BC -

Compatibility guarantees for Kotlin releases

—
—

Compatibility across platforms

Experimental features

EAP builds

177

We publish Early Access Preview (EAP) builds to special channels where early adopters from the community can try them out
and give us feedback. Such builds provide no compatibility guarantees whatsoever (although we do our best to keep them
reasonably compatible with releases and with each other). Quality expectations for such builds are also much lower than for
releases. Beta builds also fall under this category.

IMPORTANT NOTE: all binaries compiled by EAP builds for 1.X (e.g. 1.1.0-eap-X) are rejected by release builds of the
compiler. We don't want any code compiled by pre-release versions to be kept around after a stable version is released. This
does not concern EAPs of patch versions (e.g. 1.1.3-eap-X), these EAPs produce builds with stable ABI.

When a big team is migrating onto a new version, it may appear in a "inconsistent state" at some point, when some developers
have already updated, and others haven't. To prevent the former from writing and committing code that others may not be able
to compile, we provide the following command line switches (also available in the IDE and Gradle/Maven):

-language-version X.Y - compatibility mode for Kotlin language version X.Y, reports errors for all language features that
came out later.
-api-version X.Y - compatibility mode for Kotlin API version X.Y, reports errors for all code using newer APIs from the Kotlin
Standard Library (including the code generated by the compiler).

If you use the NV Kotlin compiler and have the OV standard library or the OV reflection library in the classpath, it can be a sign
that the project is misconfigured. To prevent unexpected problems during compilation or at runtime, we suggest either
updating the dependencies to NV, or specifying the API version / language version arguments explicitly. Otherwise the compiler
detects that something can go wrong and reports a warning.

For example, if OV = 1.0 and NV = 1.1, you can observe one of the following warnings:

Runtime JAR files in the classpath have the version 1.0, which is older than the API version 1.1.
Consider using the runtime of version 1.1, or pass '-api-version 1.0' explicitly to restrict the
available APIs to the runtime of version 1.0.

This means that you're using the Kotlin compiler 1.1 against the standard or reflection library of version 1.0. This can be handled
in different ways:

If you intend to use the APIs from the 1.1 Standard Library, or language features that depend on those APIs, you should
upgrade the dependency to the version 1.1.
If you want to keep your code compatible with the 1.0 standard library, you can pass -api-version 1.0 .

If you've just upgraded to Kotlin 1.1 but can not use new language features yet (e.g. because some of your teammates may
not have upgraded), you can pass -language-version 1.0 , which will restrict all APIs and language features to 1.0.

Runtime JAR files in the classpath should have the same version. These files were found in the classpath:
 kotlin-reflect.jar (version 1.0)
 kotlin-stdlib.jar (version 1.1)
Consider providing an explicit dependency on kotlin-reflect 1.1 to prevent strange errors
Some runtime JAR files in the classpath have an incompatible version. Consider removing them from the
classpath

This means that you have a dependency on libraries of different versions, for example the 1.1 standard library and the 1.0
reflection library. To prevent subtle errors at runtime, we recommend you to use the same version of all Kotlin libraries. In this
case, consider adding an explicit dependency on the 1.1 reflection library.

Some JAR files in the classpath have the Kotlin Runtime library bundled into them.
This may cause difficult to debug problems if there's a different version of the Kotlin Runtime library in the
classpath.
Consider removing these libraries from the classpath

This means that there's a library in the classpath which does not depend on the Kotlin standard library as a Gradle/Maven
dependency, but is distributed in the same artifact with it (i.e. has it bundled). Such a library may cause issues because standard
build tools do not consider it an instance of the Kotlin standard library, thus it's not subject to the dependency version resolution
mechanisms, and you can end up with several versions of the same library in the classpath. Consider contacting the authors of
such a library and suggesting to use the Gradle/Maven dependency instead.

Compatibility modes

—

—

Binary compatibility warnings

—

—

—

178

https://kotlinlang.org/docs/reference/using-gradle.html#compiler-options
https://kotlinlang.org/docs/reference/using-maven.html#specifying-compiler-options

Java Interop

Kotlin is designed with Java Interoperability in mind. Existing Java code can be called from Kotlin in a natural way, and Kotlin code
can be used from Java rather smoothly as well. In this section we describe some details about calling Java code from Kotlin.

Pretty much all Java code can be used without any issues:

import java.util.*

fun demo(source: List<Int>) {
 val list = ArrayList<Int>()
 // 'for'-loops work for Java collections:
 for (item in source) {
 list.add(item)
 }
 // Operator conventions work as well:
 for (i in 0..source.size - 1) {
 list[i] = source[i] // get and set are called
 }
}

Methods that follow the Java conventions for getters and setters (no-argument methods with names starting with get and
single-argument methods with names starting with set) are represented as properties in Kotlin. Boolean accessor methods
(where the name of the getter starts with is and the name of the setter starts with set) are represented as properties which
have the same name as the getter method.

For example:

import java.util.Calendar

fun calendarDemo() {
 val calendar = Calendar.getInstance()
 if (calendar.firstDayOfWeek == Calendar.SUNDAY) { // call getFirstDayOfWeek()
 calendar.firstDayOfWeek = Calendar.MONDAY // call setFirstDayOfWeek()
 }
 if (!calendar.isLenient) { // call isLenient()
 calendar.isLenient = true // call setLenient()
 }
}

Note that, if the Java class only has a setter, it will not be visible as a property in Kotlin, because Kotlin does not support set-only
properties at this time.

If a Java method returns void, it will return Unit when called from Kotlin. If, by any chance, someone uses that return value, it will
be assigned at the call site by the Kotlin compiler, since the value itself is known in advance (being Unit).

Calling Java code from Kotlin

Getters and Setters

Methods returning void

Escaping for Java identi5ers that are keywords in Kotlin

179

Some of the Kotlin keywords are valid identifiers in Java: in, object, is, etc. If a Java library uses a Kotlin keyword for a method,
you can still call the method escaping it with the backtick (`) character:

foo.`is`(bar)

Any reference in Java may be null, which makes Kotlin's requirements of strict null-safety impractical for objects coming from
Java. Types of Java declarations are treated specially in Kotlin and called platform types. Null-checks are relaxed for such types, so
that safety guarantees for them are the same as in Java (see more below).

Consider the following examples:

val list = ArrayList<String>() // non-null (constructor result)
list.add("Item")
val size = list.size // non-null (primitive int)
val item = list[0] // platform type inferred (ordinary Java object)

When we call methods on variables of platform types, Kotlin does not issue nullability errors at compile time, but the call may fail
at runtime, because of a null-pointer exception or an assertion that Kotlin generates to prevent nulls from propagating:

item.substring(1) // allowed, may throw an exception if item == null

Platform types are non-denotable, meaning that one can not write them down explicitly in the language. When a platform value is
assigned to a Kotlin variable, we can rely on type inference (the variable will have an inferred platform type then, as item has in
the example above), or we can choose the type that we expect (both nullable and non-null types are allowed):

val nullable: String? = item // allowed, always works
val notNull: String = item // allowed, may fail at runtime

If we choose a non-null type, the compiler will emit an assertion upon assignment. This prevents Kotlin's non-null variables from
holding nulls. Assertions are also emitted when we pass platform values to Kotlin functions expecting non-null values etc.
Overall, the compiler does its best to prevent nulls from propagating far through the program (although sometimes this is
impossible to eliminate entirely, because of generics).

As mentioned above, platform types cannot be mentioned explicitly in the program, so there's no syntax for them in the
language. Nevertheless, the compiler and IDE need to display them sometimes (in error messages, parameter info etc), so we
have a mnemonic notation for them:

T! means " T or T? ",

(Mutable)Collection<T>! means "Java collection of T may be mutable or not, may be nullable or not",

Array<(out) T>! means "Java array of T (or a subtype of T), nullable or not"

Java types which have nullability annotations are represented not as platform types, but as actual nullable or non-null Kotlin
types. The compiler supports several flavors of nullability annotations, including:

JetBrains (@Nullable and @NotNull from the org.jetbrains.annotations package)

Android (com.android.annotations and android.support.annotations)

JSR-305 (javax.annotation , more details below)

FindBugs (edu.umd.cs.findbugs.annotations)

Eclipse (org.eclipse.jdt.annotation)

Lombok (lombok.NonNull).

You can find the full list in the Kotlin compiler source code.

Null-Safety and Platform Types

Notation for Platform Types

—

—

—

Nullability annotations

—

—

—

—

—

—

180

https://www.jetbrains.com/idea/help/nullable-and-notnull-annotations.html
https://github.com/JetBrains/kotlin/blob/master/core/descriptors.jvm/src/org/jetbrains/kotlin/load/java/JvmAnnotationNames.kt

The @Nonnull annotation defined in JSR-305 is supported for denoting nullability of Java types.

If the @Nonnull(when = ...) value is When.ALWAYS , the annotated type is treated as non-null; When.MAYBE and When.NEVER
denote a nullable type; and When.UNKNOWN forces the type to be platform one.

A library can be compiled against the JSR-305 annotations, but there's no need to make the annotations artifact (e.g.
jsr305.jar) a compile dependency for the library consumers. The Kotlin compiler can read the JSR-305 annotations from a
library without the annotations present on the classpath.

Since Kotlin 1.1.50, custom nullability qualifiers (KEEP-79) are also supported (see below).

If an annotation type is annotated with both @TypeQualifierNickname and JSR-305 @Nonnull (or its another nickname, such as
@CheckForNull), then the annotation type is itself used for retrieving precise nullability and has the same meaning as that
nullability annotation:

@TypeQualifierNickname
@Nonnull(when = When.ALWAYS)
@Retention(RetentionPolicy.RUNTIME)
public @interface MyNonnull {
}

@TypeQualifierNickname
@CheckForNull // a nickname to another type qualifier nickname
@Retention(RetentionPolicy.RUNTIME)
public @interface MyNullable {
}

interface A {
 @MyNullable String foo(@MyNonnull String x);
 // in Kotlin (strict mode): `fun foo(x: String): String?`

 String bar(List<@MyNonnull String> x);
 // in Kotlin (strict mode): `fun bar(x: List<String>!): String!`
}

@TypeQualifierDefault allows introducing annotations that, when being applied, define the default nullability within the scope
of the annotated element.

Such annotation type should itself be annotated with both @Nonnull (or its nickname) and @TypeQualifierDefault(...) with
one or more ElementType values:

ElementType.METHOD for return types of methods;

ElementType.PARAMETER for value parameters;

ElementType.FIELD for fields; and

ElementType.TYPE_USE (since 1.1.60) for any type including type arguments, upper bounds of type parameters and
wildcard types.

The default nullability is used when a type itself is not annotated by a nullability annotation, and the default is determined by the
innermost enclosing element annotated with a type qualifier default annotation with the ElementType matching the type usage.

JSR-305 Support

Type quali5er nicknames (since 1.1.50)

Type quali5er defaults (since 1.1.50)

—

—

—

—

181

https://aalmiray.github.io/jsr-305/apidocs/javax/annotation/Nonnull.html
https://jcp.org/en/jsr/detail?id=305
https://github.com/Kotlin/KEEP/blob/41091f1cc7045142181d8c89645059f4a15cc91a/proposals/jsr-305-custom-nullability-qualifiers.md
https://aalmiray.github.io/jsr-305/apidocs/javax/annotation/meta/TypeQualifierNickname.html
https://aalmiray.github.io/jsr-305/apidocs/javax/annotation/meta/TypeQualifierDefault.html

@Nonnull
@TypeQualifierDefault({ElementType.METHOD, ElementType.PARAMETER})
public @interface NonNullApi {
}

@Nonnull(when = When.MAYBE)
@TypeQualifierDefault({ElementType.METHOD, ElementType.PARAMETER, ElementType.TYPE_USE})
public @interface NullableApi {
}

@NullableApi
interface A {
 String foo(String x); // fun foo(x: String?): String?

 @NotNullApi // overriding default from the interface
 String bar(String x, @Nullable String y); // fun bar(x: String, y: String?): String

 // The List<String> type argument is seen as nullable because of `@NullableApi`
 // having the `TYPE_USE` element type:
 String baz(List<String> x); // fun baz(List<String?>?): String?

 // The type of `x` parameter remains platform because there's an explicit
 // UNKNOWN-marked nullability annotation:
 String qux(@Nonnull(when = When.UNKNOWN) String x); // fun baz(x: String!): String?
}

Note: the types in this example only take place with the strict mode enabled, otherwise, the platform types remain. See the
@UnderMigration annotation and Compiler configuration sections.

Package-level default nullability is also supported:

// FILE: test/package-info.java
@NonNullApi // declaring all types in package 'test' as non-nullable by default
package test;

The @UnderMigration annotation (provided in a separate artifact kotlin-annotations-jvm) can be used by library maintainers
to define the migration status for the nullability type qualifiers.

The status value in @UnderMigration(status = ...) specifies how the compiler treats inappropriate usages of the annotated
types in Kotlin (e.g. using a @MyNullable -annotated type value as non-null):

MigrationStatus.STRICT makes annotation work as any plain nullability annotation, i.e. report errors for the inappropriate
usages and affect the types in the annotated declarations as they are seen in Kotlin;

with MigrationStatus.WARN , the inappropriate usages are reported as compilation warnings instead of errors, but the
types in the annotated declarations remain platform; and

MigrationStatus.IGNORE makes the compiler ignore the nullability annotation completely.

A library maintainer can add @UnderMigration status to both type qualifier nicknames and type qualifier defaults:

@UnderMigration annotation (since 1.1.60)

—

—

—

182

@Nonnull(when = When.ALWAYS)
@TypeQualifierDefault({ElementType.METHOD, ElementType.PARAMETER})
@UnderMigration(status = MigrationStatus.WARN)
public @interface NonNullApi {
}

// The types in the class are non-null, but only warnings are reported
// because `@NonNullApi` is annotated `@UnderMigration(status = MigrationStatus.WARN)`
@NonNullApi
public class Test {}

Note: the migration status of a nullability annotation is not inherited by its type qualifier nicknames but is applied to its usages in
default type qualifiers.

If a default type qualifier uses a type qualifier nickname and they are both @UnderMigration , the status from the default type
qualifier is used.

The JSR-305 checks can be configured by adding the -Xjsr305 compiler flag with the following options (and their
combination):

-Xjsr305={strict|warn|ignore} to set up the behavior for non- @UnderMigration annotations. Custom nullability
qualifiers, especially @TypeQualifierDefault , are already spread among many well-known libraries, and users may need to
migrate smoothly when updating to the Kotlin version containing JSR-305 support. Since Kotlin 1.1.60, this flag only affects
non- @UnderMigration annotations.

-Xjsr305=under-migration:{strict|warn|ignore} (since 1.1.60) to override the behavior for the @UnderMigration
annotations. Users may have different view on the migration status for the libraries: they may want to have errors while the
official migration status is WARN , or vice versa, they may wish to postpone errors reporting for some until they complete their
migration.

-Xjsr305=@<fq.name>:{strict|warn|ignore} (since 1.1.60) to override the behavior for a single annotation, where
<fq.name> is the fully qualified class name of the annotation. May appear several times for different annotations. This is
useful for managing the migration state for a particular library.

The strict , warn and ignore values have the same meaning as those of MigrationStatus , and only the strict mode
affects the types in the annotated declarations as they are seen in Kotlin.

Note: the built-in JSR-305 annotations @Nonnull, @Nullable and @CheckForNull are always enabled and affect the types of
the annotated declarations in Kotlin, regardless of compiler configuration with the -Xjsr305 flag.

For example, adding -Xjsr305=ignore -Xjsr305=under-migration:ignore -Xjsr305=@org.library.MyNullable:warn to the
compiler arguments makes the compiler generate warnings for inappropriate usages of types annotated by
@org.library.MyNullable and ignore all other JSR-305 annotations.

For kotlin versions 1.1.50+/1.2, the default behavior is the same to -Xjsr305=warn . The strict value should be considered
experimental (more checks may be added to it in the future).

Kotlin treats some Java types specially. Such types are not loaded from Java "as is", but are mapped to corresponding Kotlin
types. The mapping only matters at compile time, the runtime representation remains unchanged. Java's primitive types are
mapped to corresponding Kotlin types (keeping platform types in mind):

Java type Kotlin type
byte kotlin.Byte

short kotlin.Short

int kotlin.Int

long kotlin.Long

char kotlin.Char

Compiler con5guration

—

—

—

Mapped types

183

https://aalmiray.github.io/jsr-305/apidocs/javax/annotation/Nonnull.html
https://aalmiray.github.io/jsr-305/apidocs/javax/annotation/Nullable.html
https://aalmiray.github.io/jsr-305/apidocs/javax/annotation/CheckForNull.html

float kotlin.Float
double kotlin.Double

boolean kotlin.Boolean

Java type Kotlin type

Some non-primitive built-in classes are also mapped:

Java type Kotlin type
java.lang.Object kotlin.Any!

java.lang.Cloneable kotlin.Cloneable!

java.lang.Comparable kotlin.Comparable!

java.lang.Enum kotlin.Enum!

java.lang.Annotation kotlin.Annotation!

java.lang.Deprecated kotlin.Deprecated!

java.lang.CharSequence kotlin.CharSequence!

java.lang.String kotlin.String!

java.lang.Number kotlin.Number!

java.lang.Throwable kotlin.Throwable!

Java's boxed primitive types are mapped to nullable Kotlin types:

Java type Kotlin type
java.lang.Byte kotlin.Byte?

java.lang.Short kotlin.Short?

java.lang.Integer kotlin.Int?

java.lang.Long kotlin.Long?

java.lang.Character kotlin.Char?

java.lang.Float kotlin.Float?

java.lang.Double kotlin.Double?

java.lang.Boolean kotlin.Boolean?

Note that a boxed primitive type used as a type parameter is mapped to a platform type: for example,
List<java.lang.Integer> becomes a List<Int!> in Kotlin.

Collection types may be read-only or mutable in Kotlin, so Java's collections are mapped as follows (all Kotlin types in this table
reside in the package kotlin.collections):

Java type Kotlin read-only type Kotlin mutable type Loaded platform type
Iterator<T> Iterator<T> MutableIterator<T> (Mutable)Iterator<T>!

Iterable<T> Iterable<T> MutableIterable<T> (Mutable)Iterable<T>!

Collection<T> Collection<T> MutableCollection<T> (Mutable)Collection<T>!

Set<T> Set<T> MutableSet<T> (Mutable)Set<T>!

List<T> List<T> MutableList<T> (Mutable)List<T>!

ListIterator<T> ListIterator<T> MutableListIterator<T> (Mutable)ListIterator<T>!

Map<K, V> Map<K, V> MutableMap<K, V> (Mutable)Map<K, V>!

Map.Entry<K, V> Map.Entry<K, V> MutableMap.MutableEntry<K,V> (Mutable)Map.(Mutable)Entry<K, V>!

Java's arrays are mapped as mentioned below:

Java type Kotlin type
int[] kotlin.IntArray!

String[] kotlin.Array<(out) String>!

184

Note: the static members of these Java types are not directly accessible on the companion objects of the Kotlin types. To call
them, use the full qualified names of the Java types, e.g. java.lang.Integer.toHexString(foo) .

Kotlin's generics are a little different from Java's (see Generics). When importing Java types to Kotlin we perform some
conversions:

Java's wildcards are converted into type projections,
Foo<? extends Bar> becomes Foo<out Bar!>! ,

Foo<? super Bar> becomes Foo<in Bar!>! ;

Java's raw types are converted into star projections,
List becomes List<*>! , i.e. List<out Any?>! .

Like Java's, Kotlin's generics are not retained at runtime, i.e. objects do not carry information about actual type arguments
passed to their constructors, i.e. ArrayList<Integer>() is indistinguishable from ArrayList<Character>() . This makes it
impossible to perform is-checks that take generics into account. Kotlin only allows is-checks for star-projected generic types:

if (a is List<Int>) // Error: cannot check if it is really a List of Ints
// but
if (a is List<*>) // OK: no guarantees about the contents of the list

Arrays in Kotlin are invariant, unlike Java. This means that Kotlin does not let us assign an Array<String> to an Array<Any> ,
which prevents a possible runtime failure. Passing an array of a subclass as an array of superclass to a Kotlin method is also
prohibited, but for Java methods this is allowed (through platform types of the form Array<(out) String>!).

Arrays are used with primitive datatypes on the Java platform to avoid the cost of boxing/unboxing operations. As Kotlin hides
those implementation details, a workaround is required to interface with Java code. There are specialized classes for every type
of primitive array (IntArray , DoubleArray , CharArray , and so on) to handle this case. They are not related to the Array
class and are compiled down to Java's primitive arrays for maximum performance.

Suppose there is a Java method that accepts an int array of indices:

public class JavaArrayExample {

 public void removeIndices(int[] indices) {
 // code here...
 }
}

To pass an array of primitive values you can do the following in Kotlin:

val javaObj = JavaArrayExample()
val array = intArrayOf(0, 1, 2, 3)
javaObj.removeIndices(array) // passes int[] to method

When compiling to JVM byte codes, the compiler optimizes access to arrays so that there's no overhead introduced:

val array = arrayOf(1, 2, 3, 4)
array[1] = array[1] * 2 // no actual calls to get() and set() generated
for (x in array) { // no iterator created
 print(x)
}

Even when we navigate with an index, it does not introduce any overhead:

Java generics in Kotlin

—
—

—

—
—

Java Arrays

185

for (i in array.indices) { // no iterator created
 array[i] += 2
}

Finally, in-checks have no overhead either:

if (i in array.indices) { // same as (i >= 0 && i < array.size)
 print(array[i])
}

Java classes sometimes use a method declaration for the indices with a variable number of arguments (varargs):

public class JavaArrayExample {

 public void removeIndicesVarArg(int... indices) {
 // code here...
 }
}

In that case you need to use the spread operator * to pass the IntArray :

val javaObj = JavaArrayExample()
val array = intArrayOf(0, 1, 2, 3)
javaObj.removeIndicesVarArg(*array)

It's currently not possible to pass null to a method that is declared as varargs.

Since Java has no way of marking methods for which it makes sense to use the operator syntax, Kotlin allows using any Java
methods with the right name and signature as operator overloads and other conventions (invoke() etc.) Calling Java methods
using the infix call syntax is not allowed.

In Kotlin, all exceptions are unchecked, meaning that the compiler does not force you to catch any of them. So, when you call a
Java method that declares a checked exception, Kotlin does not force you to do anything:

fun render(list: List<*>, to: Appendable) {
 for (item in list) {
 to.append(item.toString()) // Java would require us to catch IOException here
 }
}

When Java types are imported into Kotlin, all the references of the type java.lang.Object are turned into Any . Since Any is
not platform-specific, it only declares toString() , hashCode() and equals() as its members, so to make other members of
java.lang.Object available, Kotlin uses extension functions.

Effective Java, 3rd Edition Item 81 kindly suggests to prefer concurrency utilities to wait() and notify() . Thus, these
methods are not available on references of type Any . If you really need to call them, you can cast to java.lang.Object :

(foo as java.lang.Object).wait()

Java Varargs

Operators

Checked Exceptions

Object Methods

wait()/notify()

186

http://www.oracle.com/technetwork/java/effectivejava-136174.html

To retrieve the Java class of an object, use the java extension property on a class reference:

val fooClass = foo::class.java

The code above uses a bound class reference, which is supported since Kotlin 1.1. You can also use the javaClass extension
property:

val fooClass = foo.javaClass

To override clone() , your class needs to extend kotlin.Cloneable :

class Example : Cloneable {
 override fun clone(): Any { ... }
}

Do not forget about Effective Java, 3rd Edition, Item 13: Override clone judiciously.

To override finalize() , all you need to do is simply declare it, without using the override keyword:

class C {
 protected fun finalize() {
 // finalization logic
 }
}

According to Java's rules, finalize() must not be private.

At most one Java class (and as many Java interfaces as you like) can be a supertype for a class in Kotlin.

Static members of Java classes form "companion objects" for these classes. We cannot pass such a "companion object" around
as a value, but can access the members explicitly, for example:

if (Character.isLetter(a)) {
 // ...
}

To access static members of a Java type that is mapped to a Kotlin type, use the full qualified name of the Java type:
java.lang.Integer.bitCount(foo) .

Java reflection works on Kotlin classes and vice versa. As mentioned above, you can use instance::class.java ,
ClassName::class.java or instance.javaClass to enter Java reflection through java.lang.Class .

Other supported cases include acquiring a Java getter/setter method or a backing field for a Kotlin property, a KProperty for a
Java field, a Java method or constructor for a KFunction and vice versa.

getClass()

clone()

1nalize()

Inheritance from Java classes

Accessing static members

Java Re<ection

SAM Conversions

187

http://www.oracle.com/technetwork/java/effectivejava-136174.html

Just like Java 8, Kotlin supports SAM conversions. This means that Kotlin function literals can be automatically converted into
implementations of Java interfaces with a single non-default method, as long as the parameter types of the interface method
match the parameter types of the Kotlin function.

You can use this for creating instances of SAM interfaces:

val runnable = Runnable { println("This runs in a runnable") }

…and in method calls:

val executor = ThreadPoolExecutor()
// Java signature: void execute(Runnable command)
executor.execute { println("This runs in a thread pool") }

If the Java class has multiple methods taking functional interfaces, you can choose the one you need to call by using an adapter
function that converts a lambda to a specific SAM type. Those adapter functions are also generated by the compiler when
needed:

executor.execute(Runnable { println("This runs in a thread pool") })

Note that SAM conversions only work for interfaces, not for abstract classes, even if those also have just a single abstract
method.

Also note that this feature works only for Java interop; since Kotlin has proper function types, automatic conversion of functions
into implementations of Kotlin interfaces is unnecessary and therefore unsupported.

To declare a function that is implemented in native (C or C++) code, you need to mark it with the external modifier:

external fun foo(x: Int): Double

The rest of the procedure works in exactly the same way as in Java.

Using JNI with Kotlin

188

Kotlin code can be called from Java easily.

A Kotlin property is compiled to the following Java elements:

A getter method, with the name calculated by prepending the get prefix;

A setter method, with the name calculated by prepending the set prefix (only for var properties);

A private field, with the same name as the property name (only for properties with backing fields).

For example, var firstName: String gets compiled to the following Java declarations:

private String firstName;

public String getFirstName() {
 return firstName;
}

public void setFirstName(String firstName) {
 this.firstName = firstName;
}

If the name of the property starts with is , a different name mapping rule is used: the name of the getter will be the same as
the property name, and the name of the setter will be obtained by replacing is with set . For example, for a property isOpen ,
the getter will be called isOpen() and the setter will be called setOpen() . This rule applies for properties of any type, not just
Boolean .

All the functions and properties declared in a file example.kt inside a package org.foo.bar , including extension functions,
are compiled into static methods of a Java class named org.foo.bar.ExampleKt .

// example.kt
package demo

class Foo

fun bar() {
}

// Java
new demo.Foo();
demo.ExampleKt.bar();

The name of the generated Java class can be changed using the @JvmName annotation:

@file:JvmName("DemoUtils")

package demo

class Foo

fun bar() {
}

Calling Kotlin from Java

Properties

—

—

—

Package-Level Functions

189

// Java
new demo.Foo();
demo.DemoUtils.bar();

Having multiple files which have the same generated Java class name (the same package and the same name or the same
@JvmName annotation) is normally an error. However, the compiler has the ability to generate a single Java facade class which
has the specified name and contains all the declarations from all the files which have that name. To enable the generation of
such a facade, use the @JvmMultifileClass annotation in all of the files.

// oldutils.kt
@file:JvmName("Utils")
@file:JvmMultifileClass

package demo

fun foo() {
}

// newutils.kt
@file:JvmName("Utils")
@file:JvmMultifileClass

package demo

fun bar() {
}

// Java
demo.Utils.foo();
demo.Utils.bar();

If you need to expose a Kotlin property as a field in Java, you need to annotate it with the @JvmField annotation. The field will
have the same visibility as the underlying property. You can annotate a property with @JvmField if it has a backing field, is not
private, does not have open , override or const modifiers, and is not a delegated property.

class C(id: String) {
 @JvmField val ID = id
}

// Java
class JavaClient {
 public String getID(C c) {
 return c.ID;
 }
}

Late-Initialized properties are also exposed as fields. The visibility of the field will be the same as the visibility of lateinit
property setter.

Kotlin properties declared in a named object or a companion object will have static backing fields either in that named object or
in the class containing the companion object.

Usually these fields are private but they can be exposed in one of the following ways:

@JvmField annotation;

Instance Fields

Static Fields

—

190

lateinit modifier;

const modifier.

Annotating such a property with @JvmField makes it a static field with the same visibility as the property itself.

class Key(val value: Int) {
 companion object {
 @JvmField
 val COMPARATOR: Comparator<Key> = compareBy<Key> { it.value }
 }
}

// Java
Key.COMPARATOR.compare(key1, key2);
// public static final field in Key class

A late-initialized property in an object or a companion object has a static backing field with the same visibility as the property
setter.

object Singleton {
 lateinit var provider: Provider
}

// Java
Singleton.provider = new Provider();
// public static non-final field in Singleton class

Properties annotated with const (in classes as well as at the top level) are turned into static fields in Java:

// file example.kt

object Obj {
 const val CONST = 1
}

class C {
 companion object {
 const val VERSION = 9
 }
}

const val MAX = 239

In Java:

int c = Obj.CONST;
int d = ExampleKt.MAX;
int v = C.VERSION;

As mentioned above, Kotlin represents package-level functions as static methods. Kotlin can also generate static methods for
functions defined in named objects or companion objects if you annotate those functions as @JvmStatic . If you use this
annotation, the compiler will generate both a static method in the enclosing class of the object and an instance method in the
object itself. For example:

—

—

Static Methods

191

class C {
 companion object {
 @JvmStatic fun foo() {}
 fun bar() {}
 }
}

Now, foo() is static in Java, while bar() is not:

C.foo(); // works fine
C.bar(); // error: not a static method
C.Companion.foo(); // instance method remains
C.Companion.bar(); // the only way it works

Same for named objects:

object Obj {
 @JvmStatic fun foo() {}
 fun bar() {}
}

In Java:

Obj.foo(); // works fine
Obj.bar(); // error
Obj.INSTANCE.bar(); // works, a call through the singleton instance
Obj.INSTANCE.foo(); // works too

@JvmStatic annotation can also be applied on a property of an object or a companion object making its getter and setter
methods be static members in that object or the class containing the companion object.

The Kotlin visibilities are mapped to Java in the following way:

private members are compiled to private members;

private top-level declarations are compiled to package-local declarations;

protected remains protected (note that Java allows accessing protected members from other classes in the same
package and Kotlin doesn't, so Java classes will have broader access to the code);
internal declarations become public in Java. Members of internal classes go through name mangling, to make it
harder to accidentally use them from Java and to allow overloading for members with the same signature that don't see each
other according to Kotlin rules;
public remains public .

Sometimes you need to call a Kotlin method with a parameter of type KClass . There is no automatic conversion from Class to
KClass , so you have to do it manually by invoking the equivalent of the Class<T>.kotlin extension property:

kotlin.jvm.JvmClassMappingKt.getKotlinClass(MainView.class)

Sometimes we have a named function in Kotlin, for which we need a different JVM name the byte code. The most prominent
example happens due to type erasure:

Visibility

—

—

—

—

—

KClass

Handling signature clashes with @JvmName

192

fun List<String>.filterValid(): List<String>
fun List<Int>.filterValid(): List<Int>

These two functions can not be defined side-by-side, because their JVM signatures are the same:
filterValid(Ljava/util/List;)Ljava/util/List; . If we really want them to have the same name in Kotlin, we can annotate
one (or both) of them with @JvmName and specify a different name as an argument:

fun List<String>.filterValid(): List<String>

@JvmName("filterValidInt")
fun List<Int>.filterValid(): List<Int>

From Kotlin they will be accessible by the same name filterValid , but from Java it will be filterValid and filterValidInt .

The same trick applies when we need to have a property x alongside with a function getX() :

val x: Int
 @JvmName("getX_prop")
 get() = 15

fun getX() = 10

Normally, if you write a Kotlin function with default parameter values, it will be visible in Java only as a full signature, with all
parameters present. If you wish to expose multiple overloads to Java callers, you can use the @JvmOverloads annotation.

The annotation also works for constructors, static methods etc. It can't be used on abstract methods, including methods
defined in interfaces.

class Foo @JvmOverloads constructor(x: Int, y: Double = 0.0) {
 @JvmOverloads fun f(a: String, b: Int = 0, c: String = "abc") {
 ...
 }
}

For every parameter with a default value, this will generate one additional overload, which has this parameter and all parameters
to the right of it in the parameter list removed. In this example, the following will be generated:

// Constructors:
Foo(int x, double y)
Foo(int x)

// Methods
void f(String a, int b, String c) { }
void f(String a, int b) { }
void f(String a) { }

Note that, as described in Secondary Constructors, if a class has default values for all constructor parameters, a public no-
argument constructor will be generated for it. This works even if the @JvmOverloads annotation is not specified.

As we mentioned above, Kotlin does not have checked exceptions. So, normally, the Java signatures of Kotlin functions do not
declare exceptions thrown. Thus if we have a function in Kotlin like this:

Overloads Generation

Checked Exceptions

193

// example.kt
package demo

fun foo() {
 throw IOException()
}

And we want to call it from Java and catch the exception:

// Java
try {
 demo.Example.foo();
}
catch (IOException e) { // error: foo() does not declare IOException in the throws list
 // ...
}

we get an error message from the Java compiler, because foo() does not declare IOException . To work around this problem,
use the @Throws annotation in Kotlin:

@Throws(IOException::class)
fun foo() {
 throw IOException()
}

When calling Kotlin functions from Java, nobody prevents us from passing null as a non-null parameter. That's why Kotlin
generates runtime checks for all public functions that expect non-nulls. This way we get a NullPointerException in the Java
code immediately.

When Kotlin classes make use of declaration-site variance, there are two options of how their usages are seen from the Java
code. Let's say we have the following class and two functions that use it:

class Box<out T>(val value: T)

interface Base
class Derived : Base

fun boxDerived(value: Derived): Box<Derived> = Box(value)
fun unboxBase(box: Box<Base>): Base = box.value

A naive way of translating these functions into Java would be this:

Box<Derived> boxDerived(Derived value) { ... }
Base unboxBase(Box<Base> box) { ... }

The problem is that in Kotlin we can say unboxBase(boxDerived("s")) , but in Java that would be impossible, because in Java
the class Box is invariant in its parameter T , and thus Box<Derived> is not a subtype of Box<Base> . To make it work in Java
we'd have to define unboxBase as follows:

Base unboxBase(Box<? extends Base> box) { ... }

Here we make use of Java's wildcards types (? extends Base) to emulate declaration-site variance through use-site variance,
because it is all Java has.

Null-safety

Variant generics

194

To make Kotlin APIs work in Java we generate Box<Super> as Box<? extends Super> for covariantly defined Box (or Foo<?
super Bar> for contravariantly defined Foo) when it appears as a parameter. When it's a return value, we don't generate
wildcards, because otherwise Java clients will have to deal with them (and it's against the common Java coding style). Therefore,
the functions from our example are actually translated as follows:

// return type - no wildcards
Box<Derived> boxDerived(Derived value) { ... }

// parameter - wildcards
Base unboxBase(Box<? extends Base> box) { ... }

NOTE: when the argument type is final, there's usually no point in generating the wildcard, so Box<String> is always
Box<String> , no matter what position it takes.

If we need wildcards where they are not generated by default, we can use the @JvmWildcard annotation:

fun boxDerived(value: Derived): Box<@JvmWildcard Derived> = Box(value)
// is translated to
// Box<? extends Derived> boxDerived(Derived value) { ... }

On the other hand, if we don't need wildcards where they are generated, we can use @JvmSuppressWildcards :

fun unboxBase(box: Box<@JvmSuppressWildcards Base>): Base = box.value
// is translated to
// Base unboxBase(Box<Base> box) { ... }

NOTE: @JvmSuppressWildcards can be used not only on individual type arguments, but on entire declarations, such as
functions or classes, causing all wildcards inside them to be suppressed.

The type Nothing is special, because it has no natural counterpart in Java. Indeed, every Java reference type, including
java.lang.Void , accepts null as a value, and Nothing doesn't accept even that. So, this type cannot be accurately
represented in the Java world. This is why Kotlin generates a raw type where an argument of type Nothing is used:

fun emptyList(): List<Nothing> = listOf()
// is translated to
// List emptyList() { ... }

Translation of type Nothing

195

JavaScript

The dynamic type is not supported in code targeting the JVM

Being a statically typed language, Kotlin still has to interoperate with untyped or loosely typed environments, such as the
JavaScript ecosystem. To facilitate these use cases, the dynamic type is available in the language:

val dyn: dynamic = ...

The dynamic type basically turns off Kotlin's type checker:

a value of this type can be assigned to any variable or passed anywhere as a parameter;
any value can be assigned to a variable of type dynamic or passed to a function that takes dynamic as a parameter;

null -checks are disabled for such values.

The most peculiar feature of dynamic is that we are allowed to call any property or function with any parameters on a dynamic
variable:

dyn.whatever(1, "foo", dyn) // 'whatever' is not defined anywhere
dyn.whatever(*arrayOf(1, 2, 3))

On the JavaScript platform this code will be compiled "as is": dyn.whatever(1) in Kotlin becomes dyn.whatever(1) in the
generated JavaScript code.

When calling functions written in Kotlin on values of dynamic type, keep in mind the name mangling performed by the Kotlin to
JavaScript compiler. You may need to use the @JsName annotation to assign well-defined names to the functions that you need
to call.

A dynamic call always returns dynamic as a result, so we can chain such calls freely:

dyn.foo().bar.baz()

When we pass a lambda to a dynamic call, all of its parameters by default have the type dynamic :

dyn.foo {
 x -> x.bar() // x is dynamic
}

Expressions using values of dynamic type are translated to JavaScript "as is", and do not use the Kotlin operator conventions.
The following operators are supported:

binary: + , - , * , / , % , > , < >= , <= , == , != , === , !== , && , ||

unary
prefix: - , + , !

prefix and postfix: ++ , --

assignments: += , -= , *= , /= , %=

indexed access:

Dynamic Type

—
—

—

—

—
—

—

—

—

196

read: d[a] , more than one argument is an error

write: d[a1] = a2 , more than one argument in [] is an error

in , !in and .. operations with values of type dynamic are forbidden.

For a more technical description, see the spec document.

—

—

197

https://github.com/JetBrains/kotlin/blob/master/spec-docs/dynamic-types.md

Kotlin was designed for easy interoperation with Java platform. It sees Java classes as Kotlin classes, and Java sees Kotlin classes
as Java classes. However, JavaScript is a dynamically-typed language, which means it does not check types in compile-time. You
can freely talk to JavaScript from Kotlin via dynamic types, but if you want the full power of Kotlin type system, you can create
Kotlin headers for JavaScript libraries.

You can inline some JavaScript code into your Kotlin code using the js("…") function. For example:

fun jsTypeOf(o: Any): String {
 return js("typeof o")
}

The parameter of js is required to be a string constant. So, the following code is incorrect:

fun jsTypeOf(o: Any): String {
 return js(getTypeof() + " o") // error reported here
}
fun getTypeof() = "typeof"

To tell Kotlin that a certain declaration is written in pure JavaScript, you should mark it with external modifier. When the compiler
sees such a declaration, it assumes that the implementation for the corresponding class, function or property is provided by the
developer, and therefore does not try to generate any JavaScript code from the declaration. This means that you should omit
bodies of external declarations. For example:

external fun alert(message: Any?): Unit

external class Node {
 val firstChild: Node

 fun append(child: Node): Node

 fun removeChild(child: Node): Node

 // etc
}

external val window: Window

Note that external modifier is inherited by nested declarations, i.e. in Node class we do not put external before member
functions and properties.

The external modifier is only allowed on package-level declarations. You can't declare an external member of a
non- external class.

In JavaScript you can define members either on a prototype or a class itself. I.e.:

function MyClass() {
}
MyClass.sharedMember = function() { /* implementation */ };
MyClass.prototype.ownMember = function() { /* implementation */ };

There's no such syntax in Kotlin. However, in Kotlin we have companion objects. Kotlin treats companion objects of external
class in a special way: instead of expecting an object, it assumes members of companion objects to be members of the class
itself. To describe MyClass from the example above, you can write:

Calling JavaScript from Kotlin

Inline JavaScript

external modi5er

Declaring (static) members of a class

198

external class MyClass {
 companion object {
 fun sharedMember()
 }

 fun ownMember()
}

An external function can have optional parameters. How the JavaScript implementation actually computes default values for
these parameters, is unknown to Kotlin, thus it's impossible to use the usual syntax to declare such parameters in Kotlin. You
should use the following syntax:

external fun myFunWithOptionalArgs(x: Int,
 y: String = definedExternally,
 z: Long = definedExternally)

This means you can call myFunWithOptionalArgs with one required argument and two optional arguments (their default values
are calculated by some JavaScript code).

You can easily extend JavaScript classes as they were Kotlin classes. Just define an external class and extend it by
non- external class. For example:

external open class HTMLElement : Element() {
 /* members */
}

class CustomElement : HTMLElement() {
 fun foo() {
 alert("bar")
 }
}

There are some limitations:

1. When a function of external base class is overloaded by signature, you can't override it in a derived class.
2. You can't override a function with default arguments.

Note that you can't extend a non-external class by external classes.

JavaScript does not have the concept of interfaces. When a function expects its parameter to support foo and bar methods,
you just pass objects that actually have these methods. You can use interfaces to express this for statically-typed Kotlin, for
example:

external interface HasFooAndBar {
 fun foo()

 fun bar()
}

external fun myFunction(p: HasFooAndBar)

Another use case for external interfaces is to describe settings objects. For example:

Declaring optional parameters

Extending JavaScript classes

external interfaces

199

external interface JQueryAjaxSettings {
 var async: Boolean

 var cache: Boolean

 var complete: (JQueryXHR, String) -> Unit

 // etc
}

fun JQueryAjaxSettings(): JQueryAjaxSettings = js("{}")

external class JQuery {
 companion object {
 fun get(settings: JQueryAjaxSettings): JQueryXHR
 }
}

fun sendQuery() {
 JQuery.get(JQueryAjaxSettings().apply {
 complete = { (xhr, data) ->
 window.alert("Request complete")
 }
 })
}

External interfaces have some restrictions:

1. They can't be used on the right hand side of is checks.

2. as cast to external interface always succeeds (and produces a warning in compile-time).

3. They can't be passed as reified type arguments.
4. Then can't be used in class literal expression (i.e. I::class).

200

Kotlin compiler generates normal JavaScript classes, functions and properties you can freely use from JavaScript code.
Nevertheless, there are some subtle things you should remember.

To prevent spoiling the global object, Kotlin creates an object that contains all Kotlin declarations from the current module. So if
you name your module as myModule , all declarations are available to JavaScript via myModule object. For example:

fun foo() = "Hello"

Can be called from JavaScript like this:

alert(myModule.foo());

This is not applicable when you compile your Kotlin module to JavaScript module (see JavaScript Modules for more information on
this). In this case there won't be a wrapper object, instead, declarations will be exposed as a JavaScript module of a
corresponding kind. For example, in case of CommonJS you should write:

alert(require('myModule').foo());

Kotlin exposes its package structure to JavaScript, so unless you define your declarations in the root package, you have to use
fully-qualified names in JavaScript. For example:

package my.qualified.packagename

fun foo() = "Hello"

Can be called from JavaScript like this:

alert(myModule.my.qualified.packagename.foo());

In some cases (for example, to support overloads), Kotlin compiler mangles names of generated functions and attributes in
JavaScript code. To control the generated names, you can use the @JsName annotation:

// Module 'kjs'
class Person(val name: String) {
 fun hello() {
 println("Hello $name!")
 }

 @JsName("helloWithGreeting")
 fun hello(greeting: String) {
 println("$greeting $name!")
 }
}

Now you can use this class from JavaScript in the following way:

var person = new kjs.Person("Dmitry"); // refers to module 'kjs'
person.hello(); // prints "Hello Dmitry!"
person.helloWithGreeting("Servus"); // prints "Servus Dmitry!"

Calling Kotlin from JavaScript

Isolating declarations in a separate JavaScript object

Package structure

@JsName annotation

201

If we didn't specify the @JsName annotation, the name of the corresponding function would contain a suffix calculated from the
function signature, for example hello_61zpoe$.

Note that Kotlin compiler does not apply such mangling to external declarations, so you don't have to use @JsName on them.
Another case worth noticing is inheriting non-external classes from external classes. In this case any overridden functions won't
be mangled as well.

The parameter of @JsName is required to be a constant string literal which is a valid identifier. The compiler will report an error on
any attempt to pass non-identifier string to @JsName . The following example produces a compile-time error:

@JsName("new C()") // error here
external fun newC()

Kotlin numeric types, except for kotlin.Long are mapped to JavaScript Number.

kotlin.Char is mapped to JavaScript Number representing character code.

Kotlin can't distinguish between numeric types at run time (except for kotlin.Long), i.e. the following code works:

fun f() {
 val x: Int = 23
 val y: Any = x
 println(y as Float)
}

Kotlin preserves overflow semantics for kotlin.Int , kotlin.Byte , kotlin.Short , kotlin.Char and kotlin.Long .

There's no 64 bit integer number in JavaScript, so kotlin.Long is not mapped to any JavaScript object, it's emulated by a
Kotlin class.
kotlin.String is mapped to JavaScript String.

kotlin.Any is mapped to JavaScript Object (i.e. new Object() , {} , etc).

kotlin.Array is mapped to JavaScript Array.

Kotlin collections (i.e. List , Set , Map , etc) are not mapped to any specific JavaScript type.

kotlin.Throwable is mapped to JavaScript Error.

Kotlin preserves lazy object initialization in JavaScript.
Kotlin does not implement lazy initialization of top-level properties in JavaScript.

Starting with version 1.1.50 primitive array translation utilizes JavaScript TypedArray:

kotlin.ByteArray , -.ShortArray , -.IntArray , -.FloatArray , and -.DoubleArray are mapped to JavaScript Int8Array,
Int16Array, Int32Array, Float32Array, and Float64Array correspondingly.
kotlin.BooleanArray is mapped to JavaScript Int8Array with a property $type$ == "BooleanArray"

kotlin.CharArray is mapped to JavaScript UInt16Array with a property $type$ == "CharArray"

kotlin.LongArray is mapped to JavaScript Array of kotlin.Long with a property $type$ == "LongArray" .

Representing Kotlin types in JavaScript

—

—

—

—

—

—

—

—

—

—

—
—

—

—

—

—

202

Kotlin allows you to compile your Kotlin projects to JavaScript modules for popular module systems. Here is the list of available
options:

1. Plain. Don't compile for any module system. As usual, you can access a module by its name in the global scope. This option
is used by default.

2. Asynchronous Module Definition (AMD), which is in particular used by require.js library.
3. CommonJS convention, widely used by node.js/npm (require function and module.exports object)

4. Unified Module Definitions (UMD), which is compatible with both AMD and CommonJS, and works as "plain" when neither
AMD nor CommonJS is available at runtime.

Choosing the target module system depends on your build environment:

Setup per module: Open File -> Project Structure…, find your module in Modules and select "Kotlin" facet under it. Choose
appropriate module system in "Module kind" field.

Setup for the whole project: Open File -> Settings, select "Build, Execution, Deployment" -> "Compiler" -> "Kotlin compiler".
Choose appropriate module system in "Module kind" field.

To select module system when compiling via Maven, you should set moduleKind configuration property, i.e. your pom.xml
should look like this:

<plugin>
 <artifactId>kotlin-maven-plugin</artifactId>
 <groupId>org.jetbrains.kotlin</groupId>
 <version>${kotlin.version}</version>
 <executions>
 <execution>
 <id>compile</id>
 <goals>
 <goal>js</goal>
 </goals>
 </execution>
 </executions>
 <!-- Insert these lines -->
 <configuration>
 <moduleKind>commonjs</moduleKind>
 </configuration>
 <!-- end of inserted text -->
</plugin>

Available values are: plain , amd , commonjs , umd .

To select module system when compiling via Gradle, you should set moduleKind property, i.e.

compileKotlin2Js.kotlinOptions.moduleKind = "commonjs"

Available values are similar to Maven.

To tell Kotlin that an external class, package, function or property is a JavaScript module, you can use @JsModule annotation.
Consider you have the following CommonJS module called "hello":

JavaScript Modules

Choosing the Target Module System

From IntelliJ IDEA

From Maven

From Gradle

@JsModule annotation

203

https://github.com/amdjs/amdjs-api/wiki/AMD
http://wiki.commonjs.org/wiki/Modules/1.1

module.exports.sayHello = function(name) { alert("Hello, " + name); }

You should declare it like this in Kotlin:

@JsModule("hello")
external fun sayHello(name: String)

Some JavaScript libraries export packages (namespaces) instead of functions and classes. In terms of JavaScript is's an object
that has members that are classes, functions and properties. Importing these packages as Kotlin objects often looks unnatural.
The compiler allows to map imported JavaScript packages to Kotlin packages, using the following notation:

@file:JsModule("extModule")
package ext.jspackage.name

external fun foo()

external class C

where the corresponding JavaScript module is declared like this:

module.exports = {
 foo: { /* some code here */ },
 C: { /* some code here */ }
}

Important: files marked with @file:JsModule annotation can't declare non-external members. The example below produces
compile-time error:

@file:JsModule("extModule")
package ext.jspackage.name

external fun foo()

fun bar() = "!" + foo() + "!" // error here

In the previous example the JavaScript module exports a single package. However, some JavaScript libraries export multiple
packages from within a module. This case is also supported by Kotlin, though you have to declare a new .kt file for each
package you import.

For example, let's make our example a bit more complicated:

module.exports = {
 mylib: {
 pkg1: {
 foo: function() { /* some code here */ },
 bar: function() { /* some code here */ }
 },
 pkg2: {
 baz: function() { /* some code here */ }
 }
 }
}

To import this module in Kotlin, you have to write two Kotlin source files:

Applying @JsModule to packages

Importing deeper package hierarchies

204

@file:JsModule("extModule")
@file:JsQualifier("mylib.pkg1")
package extlib.pkg1

external fun foo()

external fun bar()

and

@file:JsModule("extModule")
@file:JsQualifier("mylib.pkg2")
package extlib.pkg2

external fun baz()

When a declaration has @JsModule , you can't use it from Kotlin code when you don't compile it to a JavaScript module. Usually,
developers distribute their libraries both as JavaScript modules and downloadable .js files that you can copy to project's static
resources and include via <script> element. To tell Kotlin that it's ok to use a @JsModule declaration from non-module
environment, you should put @JsNonModule declaration. For example, given JavaScript code:

function topLevelSayHello(name) { alert("Hello, " + name); }
if (module && module.exports) {
 module.exports = topLevelSayHello;
}

can be described like this:

@JsModule("hello")
@JsNonModule
@JsName("topLevelSayHello")
external fun sayHello(name: String)

Kotlin is distributed with kotlin.js standard library as a single file, which is itself compiled as an UMD module, so you can use it
with any module system described above. Also it is available on NPM as kotlin package

@JsNonModule annotation

Notes

205

https://www.npmjs.com/package/kotlin

At this time, JavaScript does not support the full Kotlin reflection API. The only supported part of the API is the ::class syntax
which allows you to refer to the class of an instance, or the class corresponding to the given type. The value of a ::class
expression is a stripped-down KClass implementation that only supports the simpleName and isInstance members.

In addition to that, you can use KClass.js to access the JsClass instance corresponding to the class. The JsClass instance itself
is a reference to the constructor function. This can be used to interoperate with JS functions that expect a reference to a
constructor.

Examples:

class A
class B
class C

inline fun <reified T> foo() {
 println(T::class.simpleName)
}

val a = A()
println(a::class.simpleName) // Obtains class for an instance; prints "A"
println(B::class.simpleName) // Obtains class for a type; prints "B"
println(B::class.js.name) // prints "B"
foo<C>() // prints "C"

JavaScript Re<ection

206

Since version 1.1.4, Kotlin/JS includes a dead code elimination (DCE) tool. This tool allows to strip out unused properties,
functions and classes from the generated JS. There are several ways you get unused declarations:

Functions can be inlined and never get called directly (which happens always except for few situations).
You are using a shared library which provides much more functions than you actually need. For example, standard library
(kotlin.js) contains functions for manipulating lists, arrays, char sequences, adapters for DOM, etc, which together gives
about 1.3 mb file. A simple "Hello, world" application only requires console routines, which is only few kilobytes for the entire
file.

Dead code elimination is often also called 'tree shaking'.

DCE tool is currently available from Gradle.

To activate DCE tool, add the following line to build.gradle :

apply plugin: 'kotlin-dce-js'

Note that if you are using multi-project build, you should apply plugin to the main project that is an entry point to your application.

By default, the resulting set of JavaScript files (your application together with all dependencies) can be found at path
$BUILD_DIR/min/ , where $BUILD_DIR is the path to generated JavaScript (usually, build/classes/main).

To configure DCE on the main source set, you can use the runDceKotlinJs task (and corresponding
runDce<sourceSetName>KotlinJs for other source sets).

Sometimes you are going to use a Kotlin declaration directly from JavaScript, and it's being stripped out by DCE. You may want to
keep this declaration. To do so, you can use the following syntax in build.gradle :

runDceKotlinJs.keep "declarationToKeep"[, "declarationToKeep", ...]

Where declarationToKeep has the following syntax:

moduleName.dot.separated.package.name.declarationName

For example, consider a module is named kotlin-js-example and it contains a function named toKeep in package
org.jetbrains.kotlin.examples . Use the following line:

runDceKotlinJs.keep "kotlin-js-example_main.org.jetbrains.kotlin.examples.toKeep"

Note that if your function has parameters, its name will be mangled, so the mangled name should be used in the keep directive.

Running DCE takes a bit of extra time each build, and the output size does not matter during development. You can improve
development builds time by making the DCE tool skip actual dead code elimination with the dceOptions.devMode flag of the
DCE tasks.

For example, to disable DCE based on a custom condition for the main source set and always for the test code, add the
following lines to the build script:

runDceKotlinJs.dceOptions.devMode = isDevMode
runDceTestKotlinJs.dceOptions.devMode = true

JavaScript DCE

—
—

How to use

Con1guring

Development mode

Example

207

A full example that shows how to integrate Kotlin with DCE and webpack to get a small bundle, can be found here.

As for 1.1.x versions, DCE tool is an experimental feature. This does not mean we are going to remove it, or that it's
unusable for production. This means that we can change names of configuration parameters, default settings, etc.
Currently you should not use DCE tool if your project is a shared library. It's only applicable when you are developing an
application (which may use shared libraries). The reason is: DCE does not know which parts of the library are going to be
used by the user's application.
DCE does not perform minification (uglification) of your code by removing unnecessary whitespaces and shortening
identifiers. You should use existing tools, like UglifyJS (https://github.com/mishoo/UglifyJS2) or Google Closure Compiler
(https://developers.google.com/closure/compiler/) for this purpose.

Notes

—

—

—

208

https://github.com/JetBrains/kotlin-examples/tree/master/gradle/js-dce

Tools

The language used to document Kotlin code (the equivalent of Java's JavaDoc) is called KDoc. In its essence, KDoc combines
JavaDoc's syntax for block tags (extended to support Kotlin's specific constructs) and Markdown for inline markup.

Kotlin's documentation generation tool is called Dokka. See the Dokka README for usage instructions.

Dokka has plugins for Gradle, Maven and Ant, so you can integrate documentation generation into your build process.

Just like with JavaDoc, KDoc comments start with /** and end with */ . Every line of the comment may begin with an asterisk,
which is not considered part of the contents of the comment.

By convention, the first paragraph of the documentation text (the block of text until the first blank line) is the summary
description of the element, and the following text is the detailed description.

Every block tag begins on a new line and starts with the @ character.

Here's an example of a class documented using KDoc:

/**
 * A group of *members*.
 *
 * This class has no useful logic; it's just a documentation example.
 *
 * @param T the type of a member in this group.
 * @property name the name of this group.
 * @constructor Creates an empty group.
 */
class Group<T>(val name: String) {
 /**
 * Adds a [member] to this group.
 * @return the new size of the group.
 */
 fun add(member: T): Int { ... }
}

KDoc currently supports the following block tags:

Documents a value parameter of a function or a type parameter of a class, property or function. To better separate the
parameter name from the description, if you prefer, you can enclose the name of the parameter in brackets. The following two
syntaxes are therefore equivalent:

@param name description.
@param[name] description.

Documenting Kotlin Code

Generating the Documentation

KDoc Syntax

Block Tags

@param <name>

209

https://github.com/Kotlin/dokka
https://github.com/Kotlin/dokka/blob/master/README.md

Documents the return value of a function.

Documents the primary constructor of a class.

Documents the receiver of an extension function.

Documents the property of a class which has the specified name. This tag can be used for documenting properties declared in
the primary constructor, where putting a doc comment directly before the property definition would be awkward.

Documents an exception which can be thrown by a method. Since Kotlin does not have checked exceptions, there is also no
expectation that all possible exceptions are documented, but you can still use this tag when it provides useful information for
users of the class.

Embeds the body of the function with the specified qualified name into the documentation for the current element, in order to
show an example of how the element could be used.

Adds a link to the specified class or method to the See Also block of the documentation.

Specifies the author of the element being documented.

Specifies the version of the software in which the element being documented was introduced.

Excludes the element from the generated documentation. Can be used for elements which are not part of the official API of a
module but still have to be visible externally.

KDoc does not support the @deprecated tag. Instead, please use the @Deprecated annotation.

For inline markup, KDoc uses the regular Markdown syntax, extended to support a shorthand syntax for linking to other
elements in the code.

To link to another element (class, method, property or parameter), simply put its name in square brackets:

Use the method [foo] for this purpose.

If you want to specify a custom label for the link, use the Markdown reference-style syntax:

Use [this method][foo] for this purpose.

@return

@constructor

@receiver

@property <name>

@throws <class>, @exception <class>

@sample <identifier>

@see <identifier>

@author

@since

@suppress

Inline Markup

Linking to Elements

210

http://daringfireball.net/projects/markdown/syntax

You can also use qualified names in the links. Note that, unlike JavaDoc, qualified names always use the dot character to
separate the components, even before a method name:

Use [kotlin.reflect.KClass.properties] to enumerate the properties of the class.

Names in links are resolved using the same rules as if the name was used inside the element being documented. In particular,
this means that if you have imported a name into the current file, you don't need to fully qualify it when you use it in a KDoc
comment.

Note that KDoc does not have any syntax for resolving overloaded members in links. Since the Kotlin documentation generation
tool puts the documentation for all overloads of a function on the same page, identifying a specific overloaded function is not
required for the link to work.

Documentation for a module as a whole, as well as packages in that module, is provided as a separate Markdown file, and the
paths to that file is passed to Dokka using the -include command line parameter or the corresponding parameters in Ant,
Maven and Gradle plugins.

Inside the file, the documentation for the module as a whole and for individual packages is introduced by the corresponding
first-level headings. The text of the heading must be "Module <module name> " for the module, and "Package <package
qualified name> " for a package.

Here's an example content of the file:

Module kotlin-demo

The module shows the Dokka syntax usage.

Package org.jetbrains.kotlin.demo

Contains assorted useful stuff.

Level 2 heading

Text after this heading is also part of documentation for `org.jetbrains.kotlin.demo`

Package org.jetbrains.kotlin.demo2

Useful stuff in another package.

Module and Package Documentation

211

Annotation processors (see JSR 269) are supported in Kotlin with the kapt compiler plugin.

Being short, you can use libraries such as Dagger or Data Binding in your Kotlin projects.

Please read below about how to apply the kapt plugin to your Gradle/Maven build.

Apply the kotlin-kapt Gradle plugin:

apply plugin: 'kotlin-kapt'

Or you can apply it using the plugins DSL:

plugins {
 id "org.jetbrains.kotlin.kapt" version "1.2.31"
}

Then add the respective dependencies using the kapt configuration in your dependencies block:

dependencies {
 kapt 'groupId:artifactId:version'
}

If you previously used the Android support for annotation processors, replace usages of the annotationProcessor
configuration with kapt . If your project contains Java classes, kapt will also take care of them.

If you use annotation processors for your androidTest or test sources, the respective kapt configurations are named
kaptAndroidTest and kaptTest . Note that kaptAndroidTest and kaptTest extends kapt , so you can just provide the
kapt dependency and it will be available both for production sources and tests.

Use arguments {} block to pass arguments to annotation processors:

kapt {
 arguments {
 arg("key", "value")
 }
}

Kapt uses Java compiler to run annotation processors.
Here is how you can pass arbitrary options to javac:

kapt {
 javacOptions {
 // Increase the max count of errors from annotation processors.
 // Default is 100.
 option("-Xmaxerrs", 500)
 }
}

Annotation Processing with Kotlin

Using in Gradle

Annotation Processor Arguments

Java Compiler Options

Non Existent Type Correction

212

https://jcp.org/en/jsr/detail?id=269
https://google.github.io/dagger/
https://developer.android.com/topic/libraries/data-binding/index.html
https://developer.android.com/studio/build/gradle-plugin-3-0-0-migration.html#annotationProcessor_config

Some annotation processors (such as AutoFactory) rely on precise types in declaration signatures. By default, Kapt replaces
every unknown type (including types for the generated classes) to NonExistentClass , but you can change this behavior. Add
the additional flag to the build.gradle file to enable error type inferring in stubs:

kapt {
 correctErrorTypes = true
}

Add an execution of the kapt goal from kotlin-maven-plugin before compile :

<execution>
 <id>kapt</id>
 <goals>
 <goal>kapt</goal>
 </goals>
 <configuration>
 <sourceDirs>
 <sourceDir>src/main/kotlin</sourceDir>
 <sourceDir>src/main/java</sourceDir>
 </sourceDirs>
 <annotationProcessorPaths>
 <!-- Specify your annotation processors here. -->
 <annotationProcessorPath>
 <groupId>com.google.dagger</groupId>
 <artifactId>dagger-compiler</artifactId>
 <version>2.9</version>
 </annotationProcessorPath>
 </annotationProcessorPaths>
 </configuration>
</execution>

You can find a complete sample project showing the use of Kotlin, Maven and Dagger in the Kotlin examples repository.

Please note that kapt is still not supported for IntelliJ IDEA’s own build system. Launch the build from the “Maven Projects”
toolbar whenever you want to re-run the annotation processing.

Kapt compiler plugin is available in the binary distribution of the Kotlin compiler.

You can attach the plugin by providing the path to its JAR file using the Xplugin kotlinc option:

-Xplugin=$KOTLIN_HOME/lib/kotlin-annotation-processing.jar

Here is a list of the available options:

sources (required): An output path for the generated files.

classes (required): An output path for the generated class files and resources.

stubs (required): An output path for the stub files. In other words, some temporary directory.

incrementalData : An output path for the binary stubs.

apclasspath (repeatable): A path to the annotation processor JAR. Pass as many apclasspath options as many JARs you
have.
apoptions : A base64-encoded list of the annotation processor options. See AP/javac options encoding for more
information.
javacArguments : A base64-encoded list of the options passed to javac. See AP/javac options encoding for more
information.
processors : A comma-specified list of annotation processor qualified class names. If specified, kapt does not try to find
annotation processors in apclasspath .

Using in Maven

Using in CLI

—

—

—

—

—

—

—

—

213

https://github.com/JetBrains/kotlin-examples/tree/master/maven/dagger-maven-example

verbose : Enable verbose output.

aptMode (required)

stubs – only generate stubs needed for annotation processing;

apt – only run annotation processing;

stubsAndApt – generate stubs and run annotation processing.

correctErrorTypes : See below. Disabled by default.

The plugin option format is: -P plugin:<plugin id>:<key>=<value> . Options can be repeated.

An example:

-P plugin:org.jetbrains.kotlin.kapt3:sources=build/kapt/sources
-P plugin:org.jetbrains.kotlin.kapt3:classes=build/kapt/classes
-P plugin:org.jetbrains.kotlin.kapt3:stubs=build/kapt/stubs

-P plugin:org.jetbrains.kotlin.kapt3:apclasspath=lib/ap.jar
-P plugin:org.jetbrains.kotlin.kapt3:apclasspath=lib/anotherAp.jar

-P plugin:org.jetbrains.kotlin.kapt3:correctErrorTypes=true

Kapt can generate Kotlin sources. Just write the generated Kotlin source files to the directory specified by
processingEnv.options["kapt.kotlin.generated"] , and these files will be compiled together with the main sources.

You can find the complete sample in the kotlin-examples Github repository.

Note that Kapt does not support multiple rounds for the generated Kotlin files.

apoptions and javacArguments CLI options accept an encoded map of options.
Here is how you can encode options by yourself:

fun encodeList(options: Map<String, String>): String {
 val os = ByteArrayOutputStream()
 val oos = ObjectOutputStream(os)

 oos.writeInt(options.size)
 for ((key, value) in options.entries) {
 oos.writeUTF(key)
 oos.writeUTF(value)
 }

 oos.flush()
 return Base64.getEncoder().encodeToString(os.toByteArray())
}

—

—

—

—

—

—

Generating Kotlin Sources

AP/Javac Options Encoding

214

https://github.com/JetBrains/kotlin-examples/tree/master/gradle/kotlin-code-generation

In order to build Kotlin with Gradle you should set up the kotlin-gradle plugin, apply it to your project and add kotlin-stdlib
dependencies. Those actions may also be performed automatically in IntelliJ IDEA by invoking the Tools | Kotlin | Configure Kotlin
in Project action.

The kotlin-gradle-plugin compiles Kotlin sources and modules.

The version of Kotlin to use is usually defined as the kotlin_version property:

buildscript {
 ext.kotlin_version = '1.2.31'

 repositories {
 mavenCentral()
 }

 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"
 }
}

This is not required when using Kotlin Gradle plugin 1.1.1 and above with the Gradle plugins DSL.

To target the JVM, the Kotlin plugin needs to be applied:

apply plugin: "kotlin"

Or, starting with Kotlin 1.1.1, the plugin can be applied using the Gradle plugins DSL:

plugins {
 id "org.jetbrains.kotlin.jvm" version "1.2.31"
}

The version should be literal in this block, and it cannot be applied from another build script.

Kotlin sources can be mixed with Java sources in the same folder, or in different folders. The default convention is using different
folders:

project
 - src
 - main (root)
 - kotlin
 - java

The corresponding sourceSets property should be updated if not using the default convention:

sourceSets {
 main.kotlin.srcDirs += 'src/main/myKotlin'
 main.java.srcDirs += 'src/main/myJava'
}

When targeting JavaScript, a different plugin should be applied:

Using Gradle

Plugin and Versions

Targeting the JVM

Targeting JavaScript

215

https://docs.gradle.org/current/userguide/plugins.html#sec:plugins_block
https://docs.gradle.org/current/userguide/plugins.html#sec:plugins_block

apply plugin: "kotlin2js"

This plugin only works for Kotlin files so it is recommended to keep Kotlin and Java files separate (if it's the case that the same
project contains Java files). As with targeting the JVM, if not using the default convention, we need to specify the source folder
using sourceSets:

sourceSets {
 main.kotlin.srcDirs += 'src/main/myKotlin'
}

In addition to the output JavaScript file, the plugin by default creates an additional JS file with binary descriptors. This file is
required if you're building a re-usable library that other Kotlin modules can depend on, and should be distributed together with
the result of translation. The generation is controlled by the kotlinOptions.metaInfo option:

compileKotlin2Js {
 kotlinOptions.metaInfo = true
}

Android's Gradle model is a little different from ordinary Gradle, so if we want to build an Android project written in Kotlin, we
need kotlin-android plugin instead of kotlin:

buildscript {
 ext.kotlin_version = '1.2.31'

 ...

 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"
 }
}
apply plugin: 'com.android.application'
apply plugin: 'kotlin-android'

Don't forget to configure the standard library dependency.

If using Android Studio, the following needs to be added under android:

android {
 ...

 sourceSets {
 main.java.srcDirs += 'src/main/kotlin'
 }
}

This lets Android Studio know that the kotlin directory is a source root, so when the project model is loaded into the IDE it will be
properly recognized. Alternatively, you can put Kotlin classes in the Java source directory, typically located in src/main/java .

In addition to the kotlin-gradle-plugin dependency shown above, you need to add a dependency on the Kotlin standard
library:

Targeting Android

Android Studio

Con5guring Dependencies

216

repositories {
 mavenCentral()
}

dependencies {
 compile "org.jetbrains.kotlin:kotlin-stdlib"
}

If you target JavaScript, use compile "org.jetbrains.kotlin:kotlin-stdlib-js" instead.

If you're targeting JDK 7 or JDK 8, you can use extended versions of the Kotlin standard library which contain additional extension
functions for APIs added in new JDK versions. Instead of kotlin-stdlib , use one of the following dependencies:

compile "org.jetbrains.kotlin:kotlin-stdlib-jdk7"
compile "org.jetbrains.kotlin:kotlin-stdlib-jdk8"

In Kotlin 1.1.x, use kotlin-stdlib-jre7 and kotlin-stdlib-jre8 instead.

If your project uses Kotlin reflection or testing facilities, you need to add the corresponding dependencies as well:

compile "org.jetbrains.kotlin:kotlin-reflect"
testCompile "org.jetbrains.kotlin:kotlin-test"
testCompile "org.jetbrains.kotlin:kotlin-test-junit"

Starting with Kotlin 1.1.2, the dependencies with group org.jetbrains.kotlin are by default resolved with the version taken
from the applied plugin. You can provide the version manually using the full dependency notation like compile
"org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version" .

See the description of Kotlin annotation processing tool (kapt).

Kotlin supports optional incremental compilation in Gradle. Incremental compilation tracks changes of source files between
builds so only files affected by these changes would be compiled.

Starting with Kotlin 1.1.1, incremental compilation is enabled by default.

There are several ways to override the default setting:

1. add kotlin.incremental=true or kotlin.incremental=false line either to a gradle.properties or a
local.properties file;

2. add -Pkotlin.incremental=true or -Pkotlin.incremental=false to gradle command line parameters. Note that in this
case the parameter should be added to each subsequent build, and any build with disabled incremental compilation
invalidates incremental caches.

When incremental compilation is enabled, you should see the following warning message in your build log:

Using kotlin incremental compilation

Note, that the first build won't be incremental.

Coroutines support is an experimental feature in Kotlin 1.2, so the Kotlin compiler reports a warning when you use coroutines in
your project. To turn off the warning, add the following block to your build.gradle file:

Annotation processing

Incremental compilation

Coroutines support

217

kotlin {
 experimental {
 coroutines 'enable'
 }
}

The Kotlin modules that the build produces are named accordingly to the archivesBaseName property of the project. If a project
has a broad name like lib or jvm , which is common for subprojects, the Kotlin output files related to the module
(*.kotlin_module) might clash with those from third-party modules with the same name. This causes problems when a project
is packaged into a single archive (e.g. APK).

To avoid this, consider setting a unique archivesBaseName manually:

archivesBaseName = 'myExampleProject_lib'

The Kotlin plugin supports Gradle Build Cache (Gradle version 4.3 and above is required; caching is disabled with lower
versions).

The kapt annotation processing tasks are not cached by default since annotation processors run arbitrary code that may not
necessarily transform the task inputs into the outputs, might access and modify the files that are not tracked by Gradle etc. To
enable caching for kapt anyway, add the following lines to the build script:

kapt {
 useBuildCache = true
}

To disable the caching for all Kotlin tasks, set the system property flag kotlin.caching.enabled to false (run the build with
the argument -Dkotlin.caching.enabled=false).

To specify additional compilation options, use the kotlinOptions property of a Kotlin compilation task.

When targeting the JVM, the tasks are called compileKotlin for production code and compileTestKotlin for test code. The
tasks for custom source sets of are called accordingly to the compile<Name>Kotlin pattern.

The names of the tasks in Android Projects contain the build variant names and follow the pattern
compile<BuildVariant>Kotlin , for example, compileDebugKotlin , compileReleaseUnitTestKotlin .

When targeting JavaScript, the tasks are called compileKotlin2Js and compileTestKotlin2Js respectively, and
compile<Name>Kotlin2Js for custom source sets.

To configure a single task, use its name. Examples:

compileKotlin {
 kotlinOptions.suppressWarnings = true
}

compileKotlin {
 kotlinOptions {
 suppressWarnings = true
 }
}

It is also possible to configure all Kotlin compilation tasks in the project:

Module names

Gradle Build Cache support (since 1.2.20)

Compiler Options

218

https://guides.gradle.org/using-build-cache/
https://developer.android.com/studio/build/build-variants.html

tasks.withType(org.jetbrains.kotlin.gradle.tasks.KotlinCompile).all {
 kotlinOptions {
 // ...
 }
}

A complete list of options for the Gradle tasks follows:

Name Description Possible values Default value
allWarningsAsErrors Report an error if there are any warnings false
suppressWarnings Generate no warnings false
verbose Enable verbose logging output false
freeCompilerArgs A list of additional compiler arguments []

Name Description Possible values Default
value

apiVersion Allow to use declarations only from the specified version of
bundled libraries

"1.0", "1.1", "1.2", "1.3
(EXPERIMENTAL)"

languageVersion Provide source compatibility with specified language
version

"1.0", "1.1", "1.2", "1.3
(EXPERIMENTAL)"

Name Description Possible
values

Default
value

javaParameters Generate metadata for Java 1.8 reflection on method parameters false
jdkHome Path to JDK home directory to include into classpath, if differs from default

JAVA_HOME

jvmTarget Target version of the generated JVM bytecode (1.6 or 1.8), default is 1.6 "1.6", "1.8" "1.6"
noJdk Don't include Java runtime into classpath false
noReflect Don't include Kotlin reflection implementation into classpath true
noStdlib Don't include Kotlin runtime into classpath true

Name Description Possible values Default
value

friendModulesDisabled Disable internal declaration export false
main Whether a main function should be called "call", "noCall" "call"
metaInfo Generate .meta.js and .kjsm files with metadata. Use to

create a library
 true

moduleKind Kind of a module generated by compiler "plain", "amd",
"commonjs", "umd"

"plain"

noStdlib Don't use bundled Kotlin stdlib true
outputFile Output file path
sourceMap Generate source map false
sourceMapEmbedSources Embed source files into source map "never", "always", "inlining"
sourceMapPrefix Prefix for paths in a source map
target Generate JS files for specific ECMA version "v5" "v5"
typedArrays Translate primitive arrays to JS typed arrays true

Attributes common for JVM, JS, and JS DCE

Attributes common for JVM and JS

Attributes speci1c for JVM

Attributes speci1c for JS

Generating documentation

219

To generate documentation for Kotlin projects, use Dokka; please refer to the Dokka README for configuration instructions.
Dokka supports mixed-language projects and can generate output in multiple formats, including standard JavaDoc.

For OSGi support see the Kotlin OSGi page.

The following examples show different possibilities of configuring the Gradle plugin:

Kotlin
Mixed Java and Kotlin
Android
JavaScript

OSGi

Examples

—
—
—
—

220

https://github.com/Kotlin/dokka
https://github.com/Kotlin/dokka/blob/master/README.md#using-the-gradle-plugin
https://github.com/JetBrains/kotlin-examples/tree/master/gradle/hello-world
https://github.com/JetBrains/kotlin-examples/tree/master/gradle/mixed-java-kotlin-hello-world
https://github.com/JetBrains/kotlin-examples/tree/master/gradle/android-mixed-java-kotlin-project
https://github.com/JetBrains/kotlin/tree/master/libraries/tools/kotlin-gradle-plugin-integration-tests/src/test/resources/testProject/kotlin2JsProject

The kotlin-maven-plugin compiles Kotlin sources and modules. Currently only Maven v3 is supported.

Define the version of Kotlin you want to use via a kotlin.version property:

<properties>
 <kotlin.version>1.2.31</kotlin.version>
</properties>

Kotlin has an extensive standard library that can be used in your applications. Configure the following dependency in the pom
file:

<dependencies>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-stdlib</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
</dependencies>

If you're targeting JDK 7 or JDK 8, you can use extended versions of the Kotlin standard library which contain additional extension
functions for APIs added in new JDK versions. Instead of kotlin-stdlib , use kotlin-stdlib-jdk7 or kotlin-stdlib-jdk8 ,
depending on your JDK version (for Kotlin 1.1.x, kotlin-stdlib-jre7 and kotlin-stdlib-jre8).

If your project uses Kotlin reflection or testing facilities, you need to add the corresponding dependencies as well. The artifact
IDs are kotlin-reflect for the reflection library, and kotlin-test and kotlin-test-junit for the testing libraries.

To compile source code, specify the source directories in the tag:

<build>
 <sourceDirectory>${project.basedir}/src/main/kotlin</sourceDirectory>
 <testSourceDirectory>${project.basedir}/src/test/kotlin</testSourceDirectory>
</build>

The Kotlin Maven Plugin needs to be referenced to compile the sources:

Using Maven

Plugin and Versions

Dependencies

Compiling Kotlin only source code

221

<build>
 <plugins>
 <plugin>
 <artifactId>kotlin-maven-plugin</artifactId>
 <groupId>org.jetbrains.kotlin</groupId>
 <version>${kotlin.version}</version>

 <executions>
 <execution>
 <id>compile</id>
 <goals> <goal>compile</goal> </goals>
 </execution>

 <execution>
 <id>test-compile</id>
 <goals> <goal>test-compile</goal> </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

To compile mixed code applications Kotlin compiler should be invoked before Java compiler. In maven terms that means kotlin-
maven-plugin should be run before maven-compiler-plugin using the following method, making sure that the kotlin plugin is
above the maven-compiler-plugin in your pom.xml file:

Compiling Kotlin and Java sources

222

<build>
 <plugins>
 <plugin>
 <artifactId>kotlin-maven-plugin</artifactId>
 <groupId>org.jetbrains.kotlin</groupId>
 <version>${kotlin.version}</version>
 <executions>
 <execution>
 <id>compile</id>
 <goals> <goal>compile</goal> </goals>
 <configuration>
 <sourceDirs>
 <sourceDir>${project.basedir}/src/main/kotlin</sourceDir>
 <sourceDir>${project.basedir}/src/main/java</sourceDir>
 </sourceDirs>
 </configuration>
 </execution>
 <execution>
 <id>test-compile</id>
 <goals> <goal>test-compile</goal> </goals>
 <configuration>
 <sourceDirs>
 <sourceDir>${project.basedir}/src/test/kotlin</sourceDir>
 <sourceDir>${project.basedir}/src/test/java</sourceDir>
 </sourceDirs>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.5.1</version>
 <executions>
 <!-- Replacing default-compile as it is treated specially by maven -->
 <execution>
 <id>default-compile</id>
 <phase>none</phase>
 </execution>
 <!-- Replacing default-testCompile as it is treated specially by maven -->
 <execution>
 <id>default-testCompile</id>
 <phase>none</phase>
 </execution>
 <execution>
 <id>java-compile</id>
 <phase>compile</phase>
 <goals> <goal>compile</goal> </goals>
 </execution>
 <execution>
 <id>java-test-compile</id>
 <phase>test-compile</phase>
 <goals> <goal>testCompile</goal> </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

To make your builds faster, you can enable incremental compilation for Maven (supported since Kotlin 1.1.2). In order to do that,
define the kotlin.compiler.incremental property:

Incremental compilation

223

<properties>
 <kotlin.compiler.incremental>true</kotlin.compiler.incremental>
</properties>

Alternatively, run your build with the -Dkotlin.compiler.incremental=true option.

See the description of Kotlin annotation processing tool (kapt).

Coroutines support is an experimental feature in Kotlin 1.2, so the Kotlin compiler reports a warning when you use coroutines in
your project. To turn off the warning, add the following block to your pom.xml file:

<configuration>
 <experimentalCoroutines>enable</experimentalCoroutines>
</configuration>

To create a small Jar file containing just the code from your module, include the following under build->plugins in your Maven
pom.xml file, where main.class is defined as a property and points to the main Kotlin or Java class:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 <mainClass>${main.class}</mainClass>
 </manifest>
 </archive>
 </configuration>
</plugin>

To create a self-contained Jar file containing the code from your module along with dependencies, include the following under
build->plugins in your Maven pom.xml file, where main.class is defined as a property and points to the main Kotlin or Java
class:

Annotation processing

Coroutines support

Jar 5le

Self-contained Jar 5le

224

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <id>make-assembly</id>
 <phase>package</phase>
 <goals> <goal>single</goal> </goals>
 <configuration>
 <archive>
 <manifest>
 <mainClass>${main.class}</mainClass>
 </manifest>
 </archive>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 </configuration>
 </execution>
 </executions>
</plugin>

This self-contained jar file can be passed directly to a JRE to run your application:

java -jar target/mymodule-0.0.1-SNAPSHOT-jar-with-dependencies.jar

In order to compile JavaScript code, you need to use the js and test-js goals for the compile execution:

<plugin>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-plugin</artifactId>
 <version>${kotlin.version}</version>
 <executions>
 <execution>
 <id>compile</id>
 <phase>compile</phase>
 <goals>
 <goal>js</goal>
 </goals>
 </execution>
 <execution>
 <id>test-compile</id>
 <phase>test-compile</phase>
 <goals>
 <goal>test-js</goal>
 </goals>
 </execution>
 </executions>
</plugin>

You also need to change the standard library dependency:

<groupId>org.jetbrains.kotlin</groupId>
<artifactId>kotlin-stdlib-js</artifactId>
<version>${kotlin.version}</version>

For unit testing support, you also need to add a dependency on the kotlin-test-js artifact.

See the Getting Started with Kotlin and JavaScript with Maven tutorial for more information.

Targeting JavaScript

225

Additional options and arguments for the compiler can be specified as tags under the <configuration> element of the Maven
plugin node:

<plugin>
 <artifactId>kotlin-maven-plugin</artifactId>
 <groupId>org.jetbrains.kotlin</groupId>
 <version>${kotlin.version}</version>
 <executions>...</executions>
 <configuration>
 <nowarn>true</nowarn> <!-- Disable warnings -->
 <args>
 <arg>-Xjsr305=strict</arg> <!-- Enable strict mode for JSR-305 annotations -->
 ...
 </args>
 </configuration>
</plugin>

Many of the options can also be configured through properties:

<project ...>
 <properties>
 <kotlin.compiler.languageVersion>1.0</kotlin.compiler.languageVersion>
 </properties>
</project>

The following attributes are supported:

Name Property name Description Possible
values

Default
value

nowarn Generate no warnings true,
false

false

languageVersion kotlin.compiler.languageVersion Provide source compatibility with specified
language version

"1.0",
"1.1"

"1.1"

apiVersion kotlin.compiler.apiVersion Allow to use declarations only from the
specified version of bundled libraries

"1.0",
"1.1"

"1.1"

sourceDirs The directories containing the source files
to compile

 The project
source roots

compilerPlugins Enabled compiler plugins []
pluginOptions Options for compiler plugins []
args Additional compiler arguments []

Name Property name Description Possible
values

Default
value

jvmTarget kotlin.compiler.jvmTarget Target version of the generated JVM bytecode "1.6", "1.8" "1.6"
jdkHome kotlin.compiler.jdkHome Path to JDK home directory to include into classpath, if

differs from default JAVA_HOME

Name Property
name

Description Possible values Default
value

outputFile Output file path
metaInfo Generate .meta.js and .kjsm files with

metadata. Use to create a library
true, false true

sourceMap Generate source map true, false false
sourceMapEmbedSources Embed source files into source map "never", "always", "inlining"

Specifying compiler options

Attributes common for JVM and JS

Attributes speci1c for JVM

Attributes speci1c for JS

226

"inlining"
sourceMapPrefix Prefix for paths in a source map
moduleKind Kind of a module generated by compiler "plain", "amd",

"commonjs", "umd"
"plain"

Name Property
name

Description Possible values Default
value

The standard JavaDoc generation plugin (maven-javadoc-plugin) does not support Kotlin code. To generate documentation
for Kotlin projects, use Dokka; please refer to the Dokka README for configuration instructions. Dokka supports mixed-
language projects and can generate output in multiple formats, including standard JavaDoc.

For OSGi support see the Kotlin OSGi page.

An example Maven project can be downloaded directly from the GitHub repository

Generating documentation

OSGi

Examples

227

https://github.com/Kotlin/dokka
https://github.com/Kotlin/dokka/blob/master/README.md#using-the-maven-plugin
https://github.com/JetBrains/kotlin-examples/archive/master/maven.zip

Kotlin provides three tasks for Ant:

kotlinc: Kotlin compiler targeting the JVM;
kotlin2js: Kotlin compiler targeting JavaScript;
withKotlin: Task to compile Kotlin files when using the standard javac Ant task.

These tasks are defined in the kotlin-ant.jar library which is located in the lib folder for the Kotlin Compiler Ant version 1.8.2+ is
required.

When the project consists of exclusively Kotlin source code, the easiest way to compile the project is to use the kotlinc task:

<project name="Ant Task Test" default="build">
 <typedef resource="org/jetbrains/kotlin/ant/antlib.xml" classpath="${kotlin.lib}/kotlin-ant.jar"/>

 <target name="build">
 <kotlinc src="hello.kt" output="hello.jar"/>
 </target>
</project>

where ${kotlin.lib} points to the folder where the Kotlin standalone compiler was unzipped.

If a project consists of multiple source roots, use src as elements to define paths:

<project name="Ant Task Test" default="build">
 <typedef resource="org/jetbrains/kotlin/ant/antlib.xml" classpath="${kotlin.lib}/kotlin-ant.jar"/>

 <target name="build">
 <kotlinc output="hello.jar">
 <src path="root1"/>
 <src path="root2"/>
 </kotlinc>
 </target>
</project>

If a project consists of both Kotlin and Java source code, while it is possible to use kotlinc, to avoid repetition of task parameters,
it is recommended to use withKotlin task:

<project name="Ant Task Test" default="build">
 <typedef resource="org/jetbrains/kotlin/ant/antlib.xml" classpath="${kotlin.lib}/kotlin-ant.jar"/>

 <target name="build">
 <delete dir="classes" failonerror="false"/>
 <mkdir dir="classes"/>
 <javac destdir="classes" includeAntRuntime="false" srcdir="src">
 <withKotlin/>
 </javac>
 <jar destfile="hello.jar">
 <fileset dir="classes"/>
 </jar>
 </target>
</project>

Using Ant

Getting the Ant Tasks

—
—
—

Targeting JVM with Kotlin-only source

Targeting JVM with Kotlin-only source and multiple roots

Targeting JVM with Kotlin and Java source

228

https://github.com/JetBrains/kotlin/releases/tag/v1.2.31

To specify additional command line arguments for <withKotlin> , you can use a nested <compilerArg> parameter. The full list
of arguments that can be used is shown when you run kotlinc -help . You can also specify the name of the module being
compiled as the moduleName attribute:

<withKotlin moduleName="myModule">
 <compilerarg value="-no-stdlib"/>
</withKotlin>

<project name="Ant Task Test" default="build">
 <typedef resource="org/jetbrains/kotlin/ant/antlib.xml" classpath="${kotlin.lib}/kotlin-ant.jar"/>

 <target name="build">
 <kotlin2js src="root1" output="out.js"/>
 </target>
</project>

<project name="Ant Task Test" default="build">
 <taskdef resource="org/jetbrains/kotlin/ant/antlib.xml" classpath="${kotlin.lib}/kotlin-ant.jar"/>

 <target name="build">
 <kotlin2js src="root1" output="out.js" outputPrefix="prefix" outputPostfix="postfix"
sourcemap="true"/>
 </target>
</project>

The metaInfo option is useful, if you want to distribute the result of translation as a Kotlin/JavaScript library. If metaInfo was set
to true , then during compilation additional JS file with binary metadata will be created. This file should be distributed together
with the result of translation:

<project name="Ant Task Test" default="build">
 <typedef resource="org/jetbrains/kotlin/ant/antlib.xml" classpath="${kotlin.lib}/kotlin-ant.jar"/>

 <target name="build">
 <!-- out.meta.js will be created, which contains binary metadata -->
 <kotlin2js src="root1" output="out.js" metaInfo="true"/>
 </target>
</project>

Complete list of elements and attributes are listed below:

Name Description Required Default Value
src Kotlin source file or directory to compile Yes
nowarn Suppresses all compilation warnings No false
noStdlib Does not include the Kotlin standard library into the classpath No false
failOnError Fails the build if errors are detected during the compilation No true

Targeting JavaScript with single source folder

Targeting JavaScript with Pre5x, PostFix and sourcemap options

Targeting JavaScript with single source folder and metaInfo option

References

Attributes common for kotlinc and kotlin2js

kotlinc Attributes

229

Name Description Required Default Value

output Destination directory or .jar file name Yes
classpath Compilation class path No
classpathref Compilation class path reference No
includeRuntime If output is a .jar file, whether Kotlin runtime library is

included in the jar
No true

moduleName Name of the module being compiled No The name of the target (if specified)
or the project

Name Description Required
output Destination file Yes
libraries Paths to Kotlin libraries No
outputPrefix Prefix to use for generated JavaScript files No
outputSuffix Suffix to use for generated JavaScript files No
sourcemap Whether sourcemap file should be generated No
metaInfo Whether metadata file with binary descriptors should be generated No
main Should compiler generated code call the main function No

kotlin2js Attributes

230

To enable Kotlin OSGi support you need to include kotlin-osgi-bundle instead of regular Kotlin libraries. It is recommended to
remove kotlin-runtime , kotlin-stdlib and kotlin-reflect dependencies as kotlin-osgi-bundle already contains all of
them. You also should pay attention in case when external Kotlin libraries are included. Most regular Kotlin dependencies are not
OSGi-ready, so you shouldn't use them and should remove them from your project.

To include the Kotlin OSGi bundle to a Maven project:

 <dependencies>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-osgi-bundle</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
 </dependencies>

To exclude the standard library from external libraries (notice that "star exclusion" works in Maven 3 only):

 <dependency>
 <groupId>some.group.id</groupId>
 <artifactId>some.library</artifactId>
 <version>some.library.version</version>

 <exclusions>
 <exclusion>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>*</artifactId>
 </exclusion>
 </exclusions>
 </dependency>

To include kotlin-osgi-bundle to a gradle project:

compile "org.jetbrains.kotlin:kotlin-osgi-bundle:$kotlinVersion"

To exclude default Kotlin libraries that comes as transitive dependencies you can use the following approach:

dependencies {
 compile (
 [group: 'some.group.id', name: 'some.library', version: 'someversion'],
 ) {
 exclude group: 'org.jetbrains.kotlin'
}

Even though it is the most preferred way to provide OSGi support, unfortunately it couldn't be done for now due to so called
"package split" issue that couldn't be easily eliminated and such a big change is not planned for now. There is Require-Bundle
feature but it is not the best option too and not recommended to use. So it was decided to make a separate artifact for OSGi.

Kotlin and OSGi

Maven

Gradle

FAQ

Why not just add required manifest options to all Kotlin libraries

231

http://wiki.osgi.org/wiki/Split_Packages

Kotlin has classes and their members final by default, which makes it inconvenient to use frameworks and libraries such as
Spring AOP that require classes to be open . The all-open compiler plugin adapts Kotlin to the requirements of those
frameworks and makes classes annotated with a specific annotation and their members open without the explicit open
keyword.

For instance, when you use Spring, you don't need all the classes to be open, but only classes annotated with specific
annotations like @Configuration or @Service . All-open allows to specify such annotations.

We provide all-open plugin support both for Gradle and Maven with the complete IDE integration.

Note: For Spring you can use the kotlin-spring compiler plugin (see below).

Add the plugin artifact to the buildscript dependencies and apply the plugin:

buildscript {
 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-allopen:$kotlin_version"
 }
}

apply plugin: "kotlin-allopen"

As an alternative, you can enable it using the plugins block:

plugins {
 id "org.jetbrains.kotlin.plugin.allopen" version "1.2.31"
}

Then specify the list of annotations that will make classes open:

allOpen {
 annotation("com.my.Annotation")
 // annotations("com.another.Annotation", "com.third.Annotation")
}

If the class (or any of its superclasses) is annotated with com.my.Annotation , the class itself and all its members will become
open.

It also works with meta-annotations:

@com.my.Annotation
annotation class MyFrameworkAnnotation

@MyFrameworkAnnotation
class MyClass // will be all-open

MyFrameworkAnnotation is annotated with the all-open meta-annotation com.my.Annotation , so it becomes an all-open
annotation as well.

Here's how to use all-open with Maven:

Compiler Plugins

All-open compiler plugin

Using in Gradle

Using in Maven

232

<plugin>
 <artifactId>kotlin-maven-plugin</artifactId>
 <groupId>org.jetbrains.kotlin</groupId>
 <version>${kotlin.version}</version>

 <configuration>
 <compilerPlugins>
 <!-- Or "spring" for the Spring support -->
 <plugin>all-open</plugin>
 </compilerPlugins>

 <pluginOptions>
 <!-- Each annotation is placed on its own line -->
 <option>all-open:annotation=com.my.Annotation</option>
 <option>all-open:annotation=com.their.AnotherAnnotation</option>
 </pluginOptions>
 </configuration>

 <dependencies>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-allopen</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
 </dependencies>
</plugin>

Please refer to the "Using in Gradle" section above for the detailed information about how all-open annotations work.

If you use Spring, you can enable the kotlin-spring compiler plugin instead of specifying Spring annotations manually. The kotlin-
spring is a wrapper on top of all-open, and it behaves exactly the same way.

As with all-open, add the plugin to the buildscript dependencies:

buildscript {
 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-allopen:$kotlin_version"
 }
}

apply plugin: "kotlin-spring" // instead of "kotlin-allopen"

Or using the Gradle plugins DSL:

plugins {
 id "org.jetbrains.kotlin.plugin.spring" version "1.2.31"
}

In Maven, enable the spring plugin:

<compilerPlugins>
 <plugin>spring</plugin>
</compilerPlugins>

The plugin specifies the following annotations: @Component, @Async, @Transactional, @Cacheable and @SpringBootTest.
Thanks to meta-annotations support classes annotated with @Configuration, @Controller, @RestController, @Service or
@Repository are automatically opened since these annotations are meta-annotated with @Component.

Of course, you can use both kotlin-allopen and kotlin-spring in the same project.

Spring support

233

http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Component.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/scheduling/annotation/Async.html
http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html
http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/cache/annotation/Cacheable.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/test/context/SpringBootTest.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/Configuration.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Controller.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RestController.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/stereotype/Service.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Repository.html
http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Component.html

Note that if you use the project template generated by the start.spring.io service, the kotlin-spring plugin will be enabled by
default.

All-open compiler plugin JAR is available in the binary distribution of the Kotlin compiler. You can attach the plugin by providing the
path to its JAR file using the Xplugin kotlinc option:

-Xplugin=$KOTLIN_HOME/lib/allopen-compiler-plugin.jar

You can specify all-open annotations directly, using the annotation plugin option, or enable the "preset". The only preset
available now for all-open is spring .

The plugin option format is: "-P plugin:<plugin id>:<key>=<value>".
Options can be repeated.

-P plugin:org.jetbrains.kotlin.allopen:annotation=com.my.Annotation
-P plugin:org.jetbrains.kotlin.allopen:preset=spring

The no-arg compiler plugin generates an additional zero-argument constructor for classes with a specific annotation.

The generated constructor is synthetic so it can’t be directly called from Java or Kotlin, but it can be called using reflection.

This allows the Java Persistence API (JPA) to instantiate the data class although it doesn't have the zero-parameter constructor
from Kotlin or Java point of view (see the description of kotlin-jpa plugin below).

The usage is pretty similar to all-open.

Add the plugin and specify the list of annotations that must lead to generating a no-arg constructor for the annotated classes.

buildscript {
 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-noarg:$kotlin_version"
 }
}

apply plugin: "kotlin-noarg"

Or using the Gradle plugins DSL:

plugins {
 id "org.jetbrains.kotlin.plugin.noarg" version "1.2.31"
}

Then specify the list of no-arg annotations:

noArg {
 annotation("com.my.Annotation")
}

Enable invokeInitializers option if you want the plugin to run the initialization logic from the synthetic constructor. Starting
from Kotlin 1.1.3-2, it is disabled by default because of KT-18667 and KT-18668 which will be addressed in the future.

noArg {
 invokeInitializers = true
}

Using in CLI

No-arg compiler plugin

Using in Gradle

234

http://start.spring.io/#!language=kotlin
https://youtrack.jetbrains.com/issue/KT-18667
https://youtrack.jetbrains.com/issue/KT-18668

<plugin>
 <artifactId>kotlin-maven-plugin</artifactId>
 <groupId>org.jetbrains.kotlin</groupId>
 <version>${kotlin.version}</version>

 <configuration>
 <compilerPlugins>
 <!-- Or "jpa" for JPA support -->
 <plugin>no-arg</plugin>
 </compilerPlugins>

 <pluginOptions>
 <option>no-arg:annotation=com.my.Annotation</option>
 <!-- Call instance initializers in the synthetic constructor -->
 <!-- <option>no-arg:invokeInitializers=true</option> -->
 </pluginOptions>
 </configuration>

 <dependencies>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-noarg</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
 </dependencies>
</plugin>

As with the kotlin-spring plugin, kotlin-jpa is a wrapped on top of no-arg. The plugin specifies @Entity, @Embeddable and
@MappedSuperclass no-arg annotations automatically.

That's how you add the plugin in Gradle:

buildscript {
 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-noarg:$kotlin_version"
 }
}

apply plugin: "kotlin-jpa"

Or using the Gradle plugins DSL:

plugins {
 id "org.jetbrains.kotlin.plugin.jpa" version "1.2.31"
}

In Maven, enable the jpa plugin:

<compilerPlugins>
 <plugin>jpa</plugin>
</compilerPlugins>

As with all-open, add the plugin JAR file to the compiler plugin classpath and specify annotations or presets:

Using in Maven

JPA support

Using in CLI

235

http://docs.oracle.com/javaee/7/api/javax/persistence/Entity.html
http://docs.oracle.com/javaee/7/api/javax/persistence/Embeddable.html
https://docs.oracle.com/javaee/7/api/javax/persistence/MappedSuperclass.html

-Xplugin=$KOTLIN_HOME/lib/noarg-compiler-plugin.jar
-P plugin:org.jetbrains.kotlin.noarg:annotation=com.my.Annotation
-P plugin:org.jetbrains.kotlin.noarg:preset=jpa

The sam-with-receiver compiler plugin makes the first parameter of the annotated Java "single abstract method" (SAM) interface
method a receiver in Kotlin. This conversion only works when the SAM interface is passed as a Kotlin lambda, both for SAM
adapters and SAM constructors (see the documentation for more details).

Here is an example:

public @interface SamWithReceiver {}

@SamWithReceiver
public interface TaskRunner {
 void run(Task task);
}

fun test(context: TaskContext) {
 val handler = TaskHandler {
 // Here 'this' is an instance of 'Task'

 println("$name is started")
 context.executeTask(this)
 println("$name is finished")
 }
}

The usage is the same to all-open and no-arg, except the fact that sam-with-receiver does not have any built-in presets, and
you need to specify your own list of special-treated annotations.

buildscript {
 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-sam-with-receiver:$kotlin_version"
 }
}

apply plugin: "kotlin-sam-with-receiver"

Then specify the list of SAM-with-receiver annotations:

samWithReceiver {
 annotation("com.my.Annotation")
}

SAM-with-receiver compiler plugin

Using in Gradle

Using in Maven

236

https://kotlinlang.org/docs/reference/java-interop.html#sam-conversions

<plugin>
 <artifactId>kotlin-maven-plugin</artifactId>
 <groupId>org.jetbrains.kotlin</groupId>
 <version>${kotlin.version}</version>

 <configuration>
 <compilerPlugins>
 <plugin>sam-with-receiver</plugin>
 </compilerPlugins>

 <pluginOptions>
 <option>sam-with-receiver:annotation=com.my.SamWithReceiver</option>
 </pluginOptions>
 </configuration>

 <dependencies>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-sam-with-receiver</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
 </dependencies>
</plugin>

Just add the plugin JAR file to the compiler plugin classpath and specify the list of sam-with-receiver annotations:

-Xplugin=$KOTLIN_HOME/lib/sam-with-receiver-compiler-plugin.jar
-P plugin:org.jetbrains.kotlin.samWithReceiver:annotation=com.my.SamWithReceiver

Using in CLI

237

FAQ

Kotlin is an OSS statically typed programming language that targets the JVM, Android, JavaScript and Native. It’s developed by
JetBrains. The project started in 2010 and was open source from very early on. The first official 1.0 release was in February
2016.

The currently released version is 1.2.31, published on March 23, 2018.

Yes. Kotlin is free, has been free and will remain free. It is developed under the Apache 2.0 license and the source code is
available on GitHub.

Kotlin has both object-oriented and functional constructs. You can use it in both OO and FP styles, or mix elements of the two.
With first-class support for features such as higher-order functions, function types and lambdas, Kotlin is a great choice if you’re
doing or exploring functional programming.

Kotlin is more concise. Rough estimates indicate approximately a 40% cut in the number of lines of code. It’s also more type-
safe, e.g. support for non-nullable types makes applications less prone to NPE’s. Other features including smart casting, higher-
order functions, extension functions and lambdas with receivers provide the ability to write expressive code as well as facilitating
creation of DSL.

Yes. Kotlin is 100% interoperable with the Java programming language and major emphasis has been placed on making sure that
your existing codebase can interact properly with Kotlin. You can easily call Kotlin code from Java and Java code from Kotlin. This
makes adoption much easier and lower-risk. There’s also an automated Java-to-Kotlin converter built into the IDE that simplifies
migration of existing code.

Kotlin can be used for any kind of development, be it server-side, client-side web and Android. With Kotlin/Native currently in the
works, support for other platforms such as embedded systems, macOS and iOS is coming. People are using Kotlin for mobile
and server-side applications, client-side with JavaScript or JavaFX, and data science, just to name a few possibilities.

Yes. Kotlin is supported as a first-class language on Android. There are hundreds of applications already using Kotlin for Android,
such as Basecamp, Pinterest and more. For more information check out the resource on Android development.

FAQ

What is Kotlin?

What is the current version of Kotlin?

Is Kotlin free?

Is Kotlin an object-oriented language or a functional one?

What advantages does Kotlin give me over the Java programming language?

Is Kotlin compatible with the Java programming language?

What can I use Kotlin for?

Can I use Kotlin for Android development?

Can I use Kotlin for server-side development?

238

http://www.jetbrains.com
https://github.com/jetbrains/kotlin

Yes. Kotlin is 100% compatible with the JVM and as such you can use any existing frameworks such as Spring Boot, vert.x or JSF.
In addition there are specific frameworks written in Kotlin such as Ktor. For more information check out the resource on server-
side development.

Yes. In addition to using for backend web, you can also use Kotlin/JS for client-side web. Kotlin can use definitions from
DefinitelyTyped to get static typing for common JavaScript libraries, and it is compatible with existing module systems such as
AMD and CommonJS. For more information check out the resource on client-side development.

Yes. You can use any Java UI framework such as JavaFx, Swing or other. In addition there are Kotlin specific frameworks such as
TornadoFX.

Kotlin/Native is currently in the works. It compiles Kotlin to native code that can run without a VM. There is a Technology Preview
released but it is not production-ready yet, and doesn’t yet target all the platforms that we plan to support for 1.0. For more
information check out the blog post announcing Kotlin/Native.

Kotlin is supported by all major Java IDEs including IntelliJ IDEA, Android Studio, Eclipse and NetBeans. In addition, a command line
compiler is available and provides straightforward support for compiling and running applications.

On the JVM side, the main build tools include Gradle, Maven, Ant, and Kobalt. There are also some build tools available that target
client-side JavaScript.

When targeting the JVM, Kotlin produces Java compatible bytecode. When targeting JavaScript, Kotlin transpiles to ES5.1 and
generates code which is compatible with module systems including AMD and CommonJS. When targeting native, Kotlin will
produce platform-specific code (via LLVM).

No. Kotlin lets you choose between generating Java 6 and Java 8 compatible bytecode. More optimal byte code may be
generated for higher versions of the platform.

Kotlin is inspired by existing languages such as Java, C#, JavaScript, Scala and Groovy. We've tried to ensure that Kotlin is easy to
learn, so that people can easily jump on board, reading and writing Kotlin in a matter of days. Learning idiomatic Kotlin and using
some more of its advanced features can take a little longer, but overall it is not a complicated language.

There are too many companies using Kotlin to list, but some more visible companies that have publicly declared usage of Kotlin,
be this via blog posts, GitHub repositories or talks include Square, Pinterest or Basecamp.

Kotlin is primarily developed by a team of engineers at JetBrains (current team size is 40+). The lead language designer is
Andrey Breslav. In addition to the core team, there are also over 100 external contributors on GitHub.

The best place to start is this website. From there you can download the compiler, try it online as well as get access to
resources, reference documentation and tutorials.

Can I use Kotlin for web development?

Can I use Kotlin for desktop development?

Can I use Kotlin for native development?

What IDEs support Kotlin?

What build tools support Kotlin?

What does Kotlin compile down to?

Does Kotlin only target Java 6?

Is Kotlin hard?

What companies are using Kotlin?

Who develops Kotlin?

Where can I learn more about Kotlin?

239

http://github.com/kotlin/ktor
http://definitelytyped.org
https://github.com/edvin/tornadofx
https://blog.jetbrains.com/kotlin/tag/native/
https://blog.jetbrains.com/kotlin/2017/04/kotlinnative-tech-preview-kotlin-without-a-vm/
http://plugins.netbeans.org/plugin/68590/kotlin
http://beust.com/kobalt/home/index.html
https://medium.com/square-corner-blog/square-open-source-loves-kotlin-c57c21710a17
https://www.youtube.com/watch?v=mDpnc45WwlI
https://m.signalvnoise.com/how-we-made-basecamp-3s-android-app-100-kotlin-35e4e1c0ef12
https://twitter.com/abreslav
https://kotlinlang.org
https://try.kotlinlang.org

There are already a number of books available for Kotlin, including Kotlin in Action which is by Kotlin team members Dmitry
Jemerov and Svetlana Isakova, Kotlin for Android Developers targeted at Android developers.

There are a few courses available for Kotlin, including a Pluralsight Kotlin Course by Kevin Jones, an O’Reilly Course by Hadi Hariri
and an Udemy Kotlin Course by Peter Sommerhoff.

There are also many recordings of Kotlin talks available on YouTube and Vimeo.

Yes. Kotlin has a very vibrant community. Kotlin developers hang out on the Kotlin forums, StackOverflow and more actively on
the Kotlin Slack (with close to 7000 members as of May 2017).

Yes. There are many User Groups and Meetups now focused exclusively around Kotlin. You can find a list on the web site. In
addition there are community organised Kotlin Nights events around the world.

Yes. The first official KotlinConf, taking place in San Francisco 2-3 November 2017. Kotlin is also being covered in different
conferences worldwide. You can find a list of upcoming talks on the web site.

Yes. The most active Kotlin account is on Twitter. There is also a Google+ group.

The web site has a bunch of online resources, including Kotlin Digests by community members, a newsletter, a podcast and
more.

Logos can be downloaded here. Please follow simple rules in the guidelines.pdf inside the archive.

Are there any books on Kotlin?

Are there any online courses available for Kotlin?

Does Kotlin have a community?

Are there Kotlin events?

Is there a Kotlin conference?

Is Kotlin on Social Media?

Any other online Kotlin resources?

Where can I get an HD Kotlin logo?

240

https://www.manning.com/books/kotlin-in-action
https://leanpub.com/kotlin-for-android-developers
https://www.pluralsight.com/courses/kotlin-getting-started
http://shop.oreilly.com/product/0636920052982.do
http://petersommerhoff.com/dev/kotlin/kotlin-beginner-tutorial/
http://kotlinlang.org/community/talks.html
http://discuss.kotlinlang.org
http://stackoverflow.com/questions/tagged/kotlin
http://slack.kotlinlang.org
https://kotlinconf.com
https://twitter.com/kotlin
https://plus.google.com/communities/104597899765146112928
https://kotlinlang.org/community/
https://kotlin.link
http://www.kotlinweekly.net
https://talkingkotlin.com
https://resources.jetbrains.com/storage/products/kotlin/docs/kotlin_logos.zip

Kotlin fixes a series of issues that Java suffers from:

Null references are controlled by the type system.
No raw types
Arrays in Kotlin are invariant
Kotlin has proper function types, as opposed to Java's SAM-conversions
Use-site variance without wildcards
Kotlin does not have checked exceptions

Checked exceptions
Primitive types that are not classes
Static members
Non-private fields
Wildcard-types
Ternary-operator a ? b : c

Lambda expressions + Inline functions = performant custom control structures
Extension functions
Null-safety
Smart casts
String templates
Properties
Primary constructors
First-class delegation
Type inference for variable and property types
Singletons
Declaration-site variance & Type projections
Range expressions
Operator overloading
Companion objects
Data classes
Separate interfaces for read-only and mutable collections
Coroutines

Comparison to Java Programming Language

Some Java issues addressed in Kotlin

—
—
—
—
—
—

What Java has that Kotlin does not

—
—
—
—
—
—

What Kotlin has that Java does not

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

241

242

	Table of Contents
	Overview
	Using Kotlin for Server-side Development
	Frameworks for Server-side Development with Kotlin
	Deploying Kotlin Server-side Applications
	Users of Kotlin on the Server Side
	Next Steps

	Using Kotlin for Android Development
	Kotlin for Android Case Studies
	Tools for Android Development
	Next Steps

	Kotlin JavaScript Overview
	How it can be used
	Getting Started with Kotlin to JavaScript

	Kotlin/Native
	Target Platforms
	Sample Projects

	What's New in Kotlin 1.1
	Table of Contents
	JavaScript
	Coroutines (experimental)
	Other Language Features
	Type aliases
	Bound callable references
	Sealed and data classes
	Destructuring in lambdas
	Underscores for unused parameters
	Underscores in numeric literals
	Shorter syntax for properties
	Inline property accessors
	Local delegated properties
	Interception of delegated property binding
	Generic enum value access
	Scope control for implicit receivers in DSLs
	rem operator

	Standard library
	String to number conversions
	onEach()
	also(), takeIf() and takeUnless()
	groupingBy()
	Map.toMap() and Map.toMutableMap()
	Map.minus(key)
	minOf() and maxOf()
	Array-like List instantiation functions
	Map.getValue()
	Abstract collections
	Array manipulation functions

	JVM Backend
	Java 8 bytecode support
	Java 8 standard library support
	Parameter names in the bytecode
	Constant inlining
	Mutable closure variables
	javax.script support
	kotlin.reflect.full

	JavaScript Backend
	Unified standard library
	Better code generation
	The external modifier
	Improved import handling

	What's New in Kotlin 1.2
	Table of Contents
	Multiplatform Projects (experimental)
	Other Language Features
	Array literals in annotations
	Lateinit top-level properties and local variables
	Checking whether a lateinit var is initialized
	Inline functions with default functional parameters
	Information from explicit casts is used for type inference
	Smart cast improvements
	Support for ::foo as a shorthand for this::foo
	Breaking change: sound smart casts after try blocks
	Deprecation: data classes overriding copy
	Deprecation: nested types in enum entries
	Deprecation: single named argument for vararg
	Deprecation: inner classes of generic classes extending Throwable
	Deprecation: mutating backing field of a read-only property

	Standard Library
	Kotlin standard library artifacts and split packages
	windowed, chunked, zipWithNext
	fill, replaceAll, shuffle/shuffled
	Math operations in kotlin-stdlib
	Operators and conversions for BigInteger and BigDecimal
	Floating point to bits conversions
	Regex is now serializable
	Closeable.use calls Throwable.addSuppressed if available

	JVM Backend
	Constructor calls normalization
	Java-default method calls
	Breaking change: consistent behavior of x.equals(null) for platform types
	Breaking change: fix for platform null escaping through an inlined extension receiver

	JavaScript Backend
	TypedArrays support enabled by default

	Tools
	Warnings as errors

	Getting Started
	Basic Syntax
	Defining packages
	Defining functions
	Defining variables
	Comments
	Using string templates
	Using conditional expressions
	Using nullable values and checking for null
	Using type checks and automatic casts
	Using a for loop
	Using a while loop
	Using when expression
	Using ranges
	Using collections
	Creating basic classes and their instances:

	Idioms
	Creating DTOs (POJOs/POCOs)
	Default values for function parameters
	Filtering a list
	String Interpolation
	Instance Checks
	Traversing a map/list of pairs
	Using ranges
	Read-only list
	Read-only map
	Accessing a map
	Lazy property
	Extension Functions
	Creating a singleton
	If not null shorthand
	If not null and else shorthand
	Executing a statement if null
	Get first item of a possibly empty collection
	Execute if not null
	Map nullable value if not null
	Return on when statement
	'try/catch' expression
	'if' expression
	Builder-style usage of methods that return Unit
	Single-expression functions
	Calling multiple methods on an object instance ('with')
	Java 7's try with resources
	Convenient form for a generic function that requires the generic type information
	Consuming a nullable Boolean

	Coding Conventions
	Applying the style guide
	Source code organization
	Directory structure
	Source file names
	Source file organization
	Class layout
	Interface implementation layout
	Overload layout

	Naming rules
	Function names
	Property names
	Choosing good names

	Formatting
	Horizontal whitespace
	Colon
	Class header formatting
	Modifiers
	Annotation formatting
	File annotations
	Function formatting
	Expression body formatting
	Property formatting
	Formatting control flow statements
	Method call formatting
	Chained call wrapping
	Lambda formatting

	Documentation comments
	Avoiding redundant constructs
	Unit
	Semicolons
	String templates

	Idiomatic use of language features
	Immutability
	Default parameter values
	Type aliases
	Lambda parameters
	Returns in a lambda
	Named arguments
	Using conditional statements
	if versus when
	Using nullable Boolean values in conditions
	Using loops
	Loops on ranges
	Using strings
	Functions vs Properties
	Using extension functions
	Using infix functions
	Factory functions
	Platform types
	Using scope functions apply/with/run/also/let

	Coding conventions for libraries

	Basics
	Basic Types
	Numbers
	Literal Constants
	Underscores in numeric literals (since 1.1)
	Representation
	Explicit Conversions
	Operations
	Floating Point Numbers Comparison

	Characters
	Booleans
	Arrays
	Strings
	String Literals
	String Templates

	Packages
	Default Imports
	Imports
	Visibility of Top-level Declarations

	Control Flow: if, when, for, while
	If Expression
	When Expression
	For Loops
	While Loops
	Break and continue in loops

	Returns and Jumps
	Break and Continue Labels
	Return at Labels

	Classes and Objects
	Classes and Inheritance
	Classes
	Constructors
	Creating instances of classes
	Class Members

	Inheritance
	Overriding Methods
	Overriding Properties
	Derived class initialization order
	Calling the superclass implementation
	Overriding Rules

	Abstract Classes
	Companion Objects

	Properties and Fields
	Declaring Properties
	Getters and Setters
	Backing Fields
	Backing Properties

	Compile-Time Constants
	Late-Initialized Properties and Variables
	Checking whether a lateinit var is initialized (since 1.2)

	Overriding Properties
	Delegated Properties

	Interfaces
	Implementing Interfaces
	Properties in Interfaces
	Resolving overriding conflicts

	Visibility Modifiers
	Packages
	Classes and Interfaces
	Constructors
	Local declarations

	Modules

	Extensions
	Extension Functions
	Extensions are resolved statically
	Nullable Receiver
	Extension Properties
	Companion Object Extensions
	Scope of Extensions
	Declaring Extensions as Members
	Motivation

	Data Classes
	Properties Declared in the Class Body
	Copying
	Data Classes and Destructuring Declarations
	Standard Data Classes

	Sealed Classes
	Generics
	Variance
	Declaration-site variance

	Type projections
	Use-site variance: Type projections
	Star-projections

	Generic functions
	Generic constraints
	Upper bounds

	Type erasure

	Nested and Inner Classes
	Inner classes
	Anonymous inner classes

	Enum Classes
	Initialization
	Anonymous Classes
	Working with Enum Constants

	Object Expressions and Declarations
	Object expressions
	Object declarations
	Companion Objects
	Semantic difference between object expressions and declarations

	Delegation
	Property Delegation
	Implementation by Delegation
	Overriding a member of an interface implemented by delegation

	Delegated Properties
	Standard Delegates
	Lazy
	Observable

	Storing Properties in a Map
	Local Delegated Properties (since 1.1)
	Property Delegate Requirements
	Translation Rules
	Providing a delegate (since 1.1)

	Functions and Lambdas
	Functions
	Function Declarations
	Function Usage
	Parameters
	Default Arguments
	Named Arguments
	Unit-returning functions
	Single-Expression functions
	Explicit return types
	Variable number of arguments (Varargs)
	Infix notation

	Function Scope
	Local Functions
	Member Functions

	Generic Functions
	Inline Functions
	Extension Functions
	Higher-Order Functions and Lambdas
	Tail recursive functions

	Higher-Order Functions and Lambdas
	Higher-Order Functions
	Function types
	Instantiating a function type
	Invoking a function type instance
	Inline functions

	Lambda Expressions and Anonymous Functions
	Lambda expression syntax
	Passing a lambda to the last parameter
	it: implicit name of a single parameter
	Returning a value from a lambda expression
	Underscore for unused variables (since 1.1)
	Destructuring in lambdas (since 1.1)
	Anonymous functions
	Closures
	Function literals with receiver

	Inline Functions
	noinline
	Non-local returns
	Reified type parameters
	Inline properties (since 1.1)
	Restrictions for public API inline functions

	Coroutines
	Blocking vs Suspending
	Suspending functions
	@RestrictsSuspension annotation

	The inner workings of coroutines
	Experimental status of coroutines
	Standard APIs
	Low-level API: kotlin.coroutines
	Generators API in kotlin.coroutines
	Other high-level APIs: kotlinx.coroutines

	Other
	Destructuring Declarations
	Example: Returning Two Values from a Function
	Example: Destructuring Declarations and Maps
	Underscore for unused variables (since 1.1)
	Destructuring in Lambdas (since 1.1)

	Collections: List, Set, Map
	Ranges
	How it works
	Utility functions
	rangeTo()
	downTo()
	reversed()
	step()

	Type Checks and Casts: 'is' and 'as'
	is and !is Operators
	Smart Casts
	"Unsafe" cast operator
	"Safe" (nullable) cast operator
	Type erasure and generic type checks
	Unchecked casts

	This Expression
	Qualified this

	Equality
	Structural equality
	Floating point numbers equality
	Referential equality

	Operator overloading
	Unary operations
	Unary prefix operators
	Increments and decrements

	Binary operations
	Arithmetic operators
	'In' operator
	Indexed access operator
	Invoke operator
	Augmented assignments
	Equality and inequality operators
	Comparison operators
	Property delegation operators

	Infix calls for named functions

	Null Safety
	Nullable types and Non-Null Types
	Checking for null in conditions
	Safe Calls
	Elvis Operator
	The !! Operator
	Safe Casts
	Collections of Nullable Type

	Exceptions
	Exception Classes
	Try is an expression

	Checked Exceptions
	The Nothing type
	Java Interoperability

	Annotations
	Annotation Declaration
	Usage
	Constructors
	Lambdas

	Annotation Use-site Targets
	Java Annotations
	Arrays as annotation parameters
	Accessing properties of an annotation instance

	Reflection
	Class References
	Bound Class References (since 1.1)
	Callable references
	Function References
	Example: Function Composition
	Property References
	Interoperability With Java Reflection
	Constructor References

	Bound Function and Property References (since 1.1)
	Bound constructor references

	Type-Safe Builders
	A type-safe builder example
	How it works
	Scope control: @DslMarker (since 1.1)
	Full definition of the com.example.html package
	Type aliases

	Multiplatform Projects
	Multiplatform Project Structure
	Setting Up a Multiplatform Project
	Platform-Specific Declarations
	Multiplatform tests

	Reference
	Keywords and Operators
	Hard Keywords
	Soft Keywords
	Modifier Keywords
	Special Identifiers
	Operators and Special Symbols

	Grammar
	Notation
	Symbols and naming
	EBNF expressions

	Semicolons
	Syntax
	Classes
	Class members
	Enum classes

	Types
	Control structures
	Expressions
	Precedence
	Rules

	Modifiers
	Annotations

	Lexical structure
	Compatibility
	Compatibility glossary
	Compatibility guarantees for Kotlin releases
	Compatibility across platforms
	Experimental features
	EAP builds
	Compatibility modes
	Binary compatibility warnings

	Java Interop
	Calling Java code from Kotlin
	Getters and Setters
	Methods returning void
	Escaping for Java identifiers that are keywords in Kotlin
	Null-Safety and Platform Types
	Notation for Platform Types
	Nullability annotations
	JSR-305 Support

	Mapped types
	Java generics in Kotlin
	Java Arrays
	Java Varargs
	Operators
	Checked Exceptions
	Object Methods
	wait()/notify()
	getClass()
	clone()
	finalize()

	Inheritance from Java classes
	Accessing static members
	Java Reflection
	SAM Conversions
	Using JNI with Kotlin

	Calling Kotlin from Java
	Properties
	Package-Level Functions
	Instance Fields
	Static Fields
	Static Methods
	Visibility
	KClass
	Handling signature clashes with @JvmName
	Overloads Generation
	Checked Exceptions
	Null-safety
	Variant generics
	Translation of type Nothing

	JavaScript
	Dynamic Type
	Calling JavaScript from Kotlin
	Inline JavaScript
	external modifier
	Declaring (static) members of a class
	Declaring optional parameters
	Extending JavaScript classes
	external interfaces

	Calling Kotlin from JavaScript
	Isolating declarations in a separate JavaScript object
	Package structure
	@JsName annotation

	Representing Kotlin types in JavaScript

	JavaScript Modules
	Choosing the Target Module System
	From IntelliJ IDEA
	From Maven
	From Gradle

	@JsModule annotation
	Applying @JsModule to packages
	Importing deeper package hierarchies
	@JsNonModule annotation
	Notes

	JavaScript Reflection
	JavaScript DCE
	How to use
	Configuring
	Development mode

	Example
	Notes

	Tools
	Documenting Kotlin Code
	Generating the Documentation
	KDoc Syntax
	Block Tags
	@param <name>
	@return
	@constructor
	@receiver
	@property <name>
	@throws <class>, @exception <class>
	@sample <identifier>
	@see <identifier>
	@author
	@since
	@suppress

	Inline Markup
	Linking to Elements

	Module and Package Documentation

	Annotation Processing with Kotlin
	Using in Gradle
	Annotation Processor Arguments
	Java Compiler Options
	Non Existent Type Correction
	Using in Maven
	Using in CLI
	Generating Kotlin Sources
	AP/Javac Options Encoding

	Using Gradle
	Plugin and Versions
	Targeting the JVM
	Targeting JavaScript
	Targeting Android
	Android Studio

	Configuring Dependencies
	Annotation processing
	Incremental compilation
	Coroutines support
	Module names
	Gradle Build Cache support (since 1.2.20)
	Compiler Options
	Attributes common for JVM, JS, and JS DCE
	Attributes common for JVM and JS
	Attributes specific for JVM
	Attributes specific for JS

	Generating documentation
	OSGi
	Examples

	Using Maven
	Plugin and Versions
	Dependencies
	Compiling Kotlin only source code
	Compiling Kotlin and Java sources
	Incremental compilation
	Annotation processing
	Coroutines support
	Jar file
	Self-contained Jar file
	Targeting JavaScript
	Specifying compiler options
	Attributes common for JVM and JS
	Attributes specific for JVM
	Attributes specific for JS

	Generating documentation
	OSGi
	Examples

	Using Ant
	Getting the Ant Tasks
	Targeting JVM with Kotlin-only source
	Targeting JVM with Kotlin-only source and multiple roots
	Targeting JVM with Kotlin and Java source
	Targeting JavaScript with single source folder
	Targeting JavaScript with Prefix, PostFix and sourcemap options
	Targeting JavaScript with single source folder and metaInfo option
	References
	Attributes common for kotlinc and kotlin2js
	kotlinc Attributes
	kotlin2js Attributes

	Kotlin and OSGi
	Maven
	Gradle
	FAQ
	Why not just add required manifest options to all Kotlin libraries

	Compiler Plugins
	All-open compiler plugin
	Using in Gradle
	Using in Maven
	Spring support
	Using in CLI

	No-arg compiler plugin
	Using in Gradle
	Using in Maven
	JPA support
	Using in CLI

	SAM-with-receiver compiler plugin
	Using in Gradle
	Using in Maven
	Using in CLI

	FAQ
	FAQ
	What is Kotlin?
	What is the current version of Kotlin?
	Is Kotlin free?
	Is Kotlin an object-oriented language or a functional one?
	What advantages does Kotlin give me over the Java programming language?
	Is Kotlin compatible with the Java programming language?
	What can I use Kotlin for?
	Can I use Kotlin for Android development?
	Can I use Kotlin for server-side development?
	Can I use Kotlin for web development?
	Can I use Kotlin for desktop development?
	Can I use Kotlin for native development?
	What IDEs support Kotlin?
	What build tools support Kotlin?
	What does Kotlin compile down to?
	Does Kotlin only target Java 6?
	Is Kotlin hard?
	What companies are using Kotlin?
	Who develops Kotlin?
	Where can I learn more about Kotlin?
	Are there any books on Kotlin?
	Are there any online courses available for Kotlin?
	Does Kotlin have a community?
	Are there Kotlin events?
	Is there a Kotlin conference?
	Is Kotlin on Social Media?
	Any other online Kotlin resources?
	Where can I get an HD Kotlin logo?

	Comparison to Java Programming Language
	Some Java issues addressed in Kotlin
	What Java has that Kotlin does not
	What Kotlin has that Java does not

