
Securing software by 
enforcing data-flow integrity 

Manuel Costa 

Joint work with: 
Miguel Castro, Tim Harris 

Microsoft Research Cambridge 
University of Cambridge 



Software is vulnerable 
•  use of unsafe languages is prevalent 

–  most “packaged” software written in C/C++  

•  many software defects 
–  buffer overflows, format strings, double frees 

•  many ways to exploit defects 
–  corrupt control-data: stack, function pointers 
–  corrupt non-control-data:  

function arguments, security variables 

defects are routinely exploited 



Approaches to securing software 
•  remove/avoid all defects is hard 
•  prevent control-data exploits 

–  protect specific control-data StackGuard, PointGuard 
–  detect control-flow anomalies Program Shepherding, CFI 
–  attacks can succeed without corrupting control-flow 

•  prevent non-control-data exploits 
–  bounds checking on all pointer dereferences CRED 
–  detect unsafe uses of network data 

Vigilante, [Suh04], Minos, TaintCheck, [Chen05], Argos, [Ho06] 
–  expensive in software 

no good solutions to prevent  
non-control-data exploits 



Data-flow integrity enforcement 

•  compute data-flow in the program statically 
–  for every load, compute the set of stores that 

may produce the loaded data   
•  enforce data-flow at runtime 

– when loading data, check that it came from an 
allowed store 

•  optimize enforcement with static analysis 



Data-flow integrity: advantages 

•  broad coverage 
– detects control-data and non-control-data attacks  

•  automatic 
– extracts policy from unmodified programs 

•  no false positives 
– only detects real errors (malicious or not) 

•  good performance 
–  low runtime overhead 



Outline 

•  data-flow integrity enforcement 
•  optimizations 
•  results 



Data-flow integrity 
•  at compile time, compute reaching definitions 

–  assign an id to every store instruction 
–  assign a set of allowed source ids to every load 

•  at runtime, check actual definition that reaches a load 
–  runtime definitions table (RDT) records id of last store to 

each address  
–  on store(value,address): set RDT[address] to store’s id 
–  on load(address): check if RDT[address] is one of the 

allowed source ids  
•  protect RDT with software-based fault isolation 



Example vulnerable program 

•  non-control-data attack 

•  very similar to a real attack on a SSH server 

buffer overflow in 
this function allows 
the attacker to set 
authenticated to 1 

int authenticated = 0; 
char packet[1000]; 

while (!authenticated) { 
  PacketRead(packet); 

  if (Authenticate(packet))  
    authenticated = 1; 
} 

 if (authenticated) 
   ProcessPacket(packet); 



Static analysis 

•  computes data flows conservatively 
–  flow-sensitive intraprocedural analysis 
–  flow-insensitive interprocedural analysis 

•  uses Andersen’s points-to algorithm 
•  scales to very large programs 

•  same assumptions as analysis for optimization 
– pointer arithmetic cannot navigate between 

independent objects 
–  these are the assumptions that attacks violate 



Instrumentation 

check that 
authenticated 
was written here 
or here 

SETDEF authenticated 1 
int authenticated = 0; 
char packet[1000]; 

while (CHECKDEF authenticated in {1,8} 
       !authenticated) { 
  PacketRead(packet); 

  if (Authenticate(packet)){ 
    SETDEF authenticated 8 
    authenticated = 1; 
 } 

} 
CHECKDEF authenticated in {1,8}  
if (authenticated) 
   ProcessPacket(packet); 



SETDEF authenticated 1 
int authenticated = 0; 
char packet[1000]; 

while (CHECKDEF authenticated in {1,8} 
       !authenticated) { 
  PacketRead(packet); 

  if (Authenticate(packet)){ 
    SETDEF authenticated 8 
    authenticated = 1; 
 } 

} 
CHECKDEF authenticated in {1,8}  
if (authenticated) 
   ProcessPacket(packet); 

Runtime: detecting the attack 

RDT slot for  
authenticated 

authenticated 
stored here 

stores disallowed 
above 0x40000000 

1 0 

Memory layout 

1 7 

Vulnerable program 

Attack detected! 
definition 7 not 

in {1,8} 



Also prevents control-data attacks 
•  user-visible control-data (function pointers,…) 

– handled as any other data 
•  compiler-generated control-data 

–  instrument definitions and uses of this new data 
– e.g., enforce that the definition reaching a ret is 

generated by the corresponding call 



Efficient instrumentation: SETDEF 

   lea  ecx,[_authenticated]  
   test ecx,0C0000000h  
   je   L  
   int  3 
L: shr  ecx,2 
   mov  word ptr [ecx*2+40001000h],1  

•  SETDEF _authenticated 1 is compiled to: 
get address of variable 

prevent RDT tampering 

set RDT[address] to 1 



Efficient instrumentation: CHECKDEF 

    lea  ecx,[_authenticated] 
    shr  ecx,2 
    mov  cx, word ptr [ecx*2+40001000h] 

  cmp  cx, 1 
    je   L  
    cmp  cx,8  
    je   L 
    int  3 
 L:  

• CHECKDEF _authenticated {1,8} is compiled to: 
get address of variable 

get definition id from RDT[address] 

check definition in {1,8} 



SETDEF authenticated 1 
int authenticated = 0; 
char packet[1000]; 
while ( 
CHECKDEF authenticated in {1,8} 
       !authenticated) { 
  PacketRead(packet); 
  if (Authenticate(packet)){ 
    SETDEF authenticated 8 
    authenticated = 1; 
 } 

} 
CHECKDEF authenticated in {1,8}  
if (authenticated) 
   ProcessPacket(packet); 

SETDEF authenticated 1 
int authenticated = 0; 
char packet[1000]; 
while ( 
CHECKDEF authenticated in {1} 
       !authenticated) { 
  PacketRead(packet); 
  if (Authenticate(packet)){ 
    SETDEF authenticated 1 
    authenticated = 1; 
 } 

} 
CHECKDEF authenticated in {1}  
if (authenticated) 
   ProcessPacket(packet); 

Optimization: renaming definitions 
•  definitions with the same set of uses share one id 



Other optimizations 
•  removing SETDEFs and CHECKDEFs 

– eliminate CHECKDEFs that always succeed 
– eliminate redundant SETDEFs 
– uses static analysis, but does not rely on any 

assumptions that may be violated by attacks 
•  remove bounds checks on safe writes 
•  optimize set membership checks 

– check consecutive ids using a single comparison 



Evaluation 

•  overhead on SPEC CPU and Web benchmarks 
•  contributions of optimizations 
•  ability to prevent attacks on real programs 



Runtime overhead 



Memory overhead 



Contribution of optimizations 



Overhead on SPEC Web 

maximum overhead of 23% 



Preventing real attacks 
Application Vulnerability Exploit Detected? 

NullHttpd heap-based buffer 
overflow 

overwrite cgi-bin 
configuration data 

yes 

SSH integer overflow and 
heap-based buffer 
overflow 

overwrite 
authenticated 
variable 

yes 

STunnel format string overwrite return 
address 

yes 

Ghttpd stack-based buffer 
overflow 

overwrite return 
address 

yes 



Conclusion 

•  enforcing data-flow integrity protects software 
from attacks 
– handles non-control-data and control-data attacks 
– works with unmodified C/C++ programs 
– no false positives 
–  low runtime and memory overhead 



Overhead breakdown 



Contribution of optimizations 


