
Securing software by
enforcing data-flow integrity

Manuel Costa

Joint work with:
Miguel Castro, Tim Harris

Microsoft Research Cambridge
University of Cambridge

Software is vulnerable
•  use of unsafe languages is prevalent

–  most “packaged” software written in C/C++

•  many software defects
–  buffer overflows, format strings, double frees

•  many ways to exploit defects
–  corrupt control-data: stack, function pointers
–  corrupt non-control-data:

function arguments, security variables

defects are routinely exploited

Approaches to securing software
•  remove/avoid all defects is hard
•  prevent control-data exploits

–  protect specific control-data StackGuard, PointGuard
–  detect control-flow anomalies Program Shepherding, CFI
–  attacks can succeed without corrupting control-flow

•  prevent non-control-data exploits
–  bounds checking on all pointer dereferences CRED
–  detect unsafe uses of network data

Vigilante, [Suh04], Minos, TaintCheck, [Chen05], Argos, [Ho06]
–  expensive in software

no good solutions to prevent
non-control-data exploits

Data-flow integrity enforcement

•  compute data-flow in the program statically
–  for every load, compute the set of stores that

may produce the loaded data
•  enforce data-flow at runtime

– when loading data, check that it came from an
allowed store

•  optimize enforcement with static analysis

Data-flow integrity: advantages

•  broad coverage
– detects control-data and non-control-data attacks

•  automatic
– extracts policy from unmodified programs

•  no false positives
– only detects real errors (malicious or not)

•  good performance
–  low runtime overhead

Outline

•  data-flow integrity enforcement
•  optimizations
•  results

Data-flow integrity
•  at compile time, compute reaching definitions

–  assign an id to every store instruction
–  assign a set of allowed source ids to every load

•  at runtime, check actual definition that reaches a load
–  runtime definitions table (RDT) records id of last store to

each address
–  on store(value,address): set RDT[address] to store’s id
–  on load(address): check if RDT[address] is one of the

allowed source ids
•  protect RDT with software-based fault isolation

Example vulnerable program

•  non-control-data attack

•  very similar to a real attack on a SSH server

buffer overflow in
this function allows
the attacker to set
authenticated to 1

int authenticated = 0;
char packet[1000];

while (!authenticated) {
 PacketRead(packet);

 if (Authenticate(packet))
 authenticated = 1;
}

 if (authenticated)
 ProcessPacket(packet);

Static analysis

•  computes data flows conservatively
–  flow-sensitive intraprocedural analysis
–  flow-insensitive interprocedural analysis

•  uses Andersen’s points-to algorithm
•  scales to very large programs

•  same assumptions as analysis for optimization
– pointer arithmetic cannot navigate between

independent objects
–  these are the assumptions that attacks violate

Instrumentation

check that
authenticated
was written here
or here

SETDEF authenticated 1
int authenticated = 0;
char packet[1000];

while (CHECKDEF authenticated in {1,8}
 !authenticated) {
 PacketRead(packet);

 if (Authenticate(packet)){
 SETDEF authenticated 8
 authenticated = 1;
 }

}
CHECKDEF authenticated in {1,8}
if (authenticated)
 ProcessPacket(packet);

SETDEF authenticated 1
int authenticated = 0;
char packet[1000];

while (CHECKDEF authenticated in {1,8}
 !authenticated) {
 PacketRead(packet);

 if (Authenticate(packet)){
 SETDEF authenticated 8
 authenticated = 1;
 }

}
CHECKDEF authenticated in {1,8}
if (authenticated)
 ProcessPacket(packet);

Runtime: detecting the attack

RDT slot for
authenticated

authenticated
stored here

stores disallowed
above 0x40000000

1 0

Memory layout

1 7

Vulnerable program

Attack detected!
definition 7 not

in {1,8}

Also prevents control-data attacks
•  user-visible control-data (function pointers,…)

– handled as any other data
•  compiler-generated control-data

–  instrument definitions and uses of this new data
– e.g., enforce that the definition reaching a ret is

generated by the corresponding call

Efficient instrumentation: SETDEF

 lea ecx,[_authenticated]
 test ecx,0C0000000h
 je L
 int 3
L: shr ecx,2
 mov word ptr [ecx*2+40001000h],1

•  SETDEF _authenticated 1 is compiled to:
get address of variable

prevent RDT tampering

set RDT[address] to 1

Efficient instrumentation: CHECKDEF

 lea ecx,[_authenticated]
 shr ecx,2
 mov cx, word ptr [ecx*2+40001000h]

 cmp cx, 1
 je L
 cmp cx,8
 je L
 int 3
 L:

• CHECKDEF _authenticated {1,8} is compiled to:
get address of variable

get definition id from RDT[address]

check definition in {1,8}

SETDEF authenticated 1
int authenticated = 0;
char packet[1000];
while (
CHECKDEF authenticated in {1,8}
 !authenticated) {
 PacketRead(packet);
 if (Authenticate(packet)){
 SETDEF authenticated 8
 authenticated = 1;
 }

}
CHECKDEF authenticated in {1,8}
if (authenticated)
 ProcessPacket(packet);

SETDEF authenticated 1
int authenticated = 0;
char packet[1000];
while (
CHECKDEF authenticated in {1}
 !authenticated) {
 PacketRead(packet);
 if (Authenticate(packet)){
 SETDEF authenticated 1
 authenticated = 1;
 }

}
CHECKDEF authenticated in {1}
if (authenticated)
 ProcessPacket(packet);

Optimization: renaming definitions
•  definitions with the same set of uses share one id

Other optimizations
•  removing SETDEFs and CHECKDEFs

– eliminate CHECKDEFs that always succeed
– eliminate redundant SETDEFs
– uses static analysis, but does not rely on any

assumptions that may be violated by attacks
•  remove bounds checks on safe writes
•  optimize set membership checks

– check consecutive ids using a single comparison

Evaluation

•  overhead on SPEC CPU and Web benchmarks
•  contributions of optimizations
•  ability to prevent attacks on real programs

Runtime overhead

Memory overhead

Contribution of optimizations

Overhead on SPEC Web

maximum overhead of 23%

Preventing real attacks
Application Vulnerability Exploit Detected?

NullHttpd heap-based buffer
overflow

overwrite cgi-bin
configuration data

yes

SSH integer overflow and
heap-based buffer
overflow

overwrite
authenticated
variable

yes

STunnel format string overwrite return
address

yes

Ghttpd stack-based buffer
overflow

overwrite return
address

yes

Conclusion

•  enforcing data-flow integrity protects software
from attacks
– handles non-control-data and control-data attacks
– works with unmodified C/C++ programs
– no false positives
–  low runtime and memory overhead

Overhead breakdown

Contribution of optimizations

